Advertisement

Current Hematologic Malignancy Reports

, Volume 13, Issue 2, pp 78–90 | Cite as

Prognostic Factors in the Era of Targeted Therapies in CLL

  • Prajwal Boddu
  • Alessandra Ferrajoli
Chronic Lymphocytic Leukemias (N Jain, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Chronic Lymphocytic Leukemias

Abstract

Purpose of Review

Chronic lymphocytic leukemia is heterogeneous disease characterized by a variable clinical course that is greatly influenced by various patient and disease characteristics. Over the last two decades, advent of new diagnostic methodologies has led to the identification of several factors of prognostic and predictive relevance. Furthermore, recent advances in next-generation sequencing techniques has identified recurrent novel mutations in NOTCH1, SF3B1, BIRC3, and ATM genes whose role as prognostic and predictive markers is currently being investigated. These biologic markers carry new prognostic information and their incorporation into prognostic scoring systems will likely lead to refined multi-parameter risk models.

Recent Findings

While the prognostic impact of many of the most commonly used markers on clinical outcomes in patients treated with chemo-immunotherapy is well documented, it is important to review their predictive and prognostic role in the era of novel targeted therapies.

Summary

This article will discuss the currently available information on the clinical relevance of prognostic markers in patients treated with novel targeted therapies.

Keywords

Prognostic Chemo-immunotherapy Fludarabine Ibrutinib Idelalisib Venetoclax 

Notes

Funding Source

This manuscript was supported in part by the MD Anderson Cancer Centre Leukaemia Support Grant (CCSG) CA016672, the Charif Souki Cancer Research Fund.

Compliance With Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Binet JL, Leporrier M, Dighiero G, Charron D, D’Athis P, Vaugier G, et al. A clinical staging system for chronic lymphocytic leukemia: prognostic significance. Cancer. 1977;40(2):855–64.  https://doi.org/10.1002/1097-0142(197708)40:2<855::AID-CNCR2820400239>3.0.CO;2-1.PubMedCrossRefGoogle Scholar
  2. 2.
    Rai KR, Jain P. Advances in the clinical staging of chronic lymphocytic leukemia. Clin Chem. 2011;57(12):1771–2.  https://doi.org/10.1373/clinchem.2010.159004.PubMedCrossRefGoogle Scholar
  3. 3.
    Tam CS, O’Brien S, Wierda W, Kantarjian H, Wen S, Do KA, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112(4):975–80.  https://doi.org/10.1182/blood-2008-02-140582.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chen C, Puvvada S. Prognostic factors for chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2016;11(1):37–42.  https://doi.org/10.1007/s11899-015-0294-x.PubMedCrossRefGoogle Scholar
  5. 5.
    Parikh SA, Shanafelt TD. Prognostic factors and risk stratification in chronic lymphocytic leukemia. Semin Oncol. 2016;43(2):233–40.  https://doi.org/10.1053/j.seminoncol.2016.02.009.PubMedCrossRefGoogle Scholar
  6. 6.
    Nabhan C, Raca G, Wang YL. Predicting prognosis in chronic lymphocytic leukemia in the contemporary era. JAMA Oncol. 2015;1(7):965–74.  https://doi.org/10.1001/jamaoncol.2015.0779.PubMedCrossRefGoogle Scholar
  7. 7.
    Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.  https://doi.org/10.1182/blood-2007-06-093906.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Campregher PV, Hamerschlak N. Novel prognostic gene mutations identified in chronic lymphocytic leukemia and their impact on clinical practice. Clin Lymphoma Myeloma Leuk. 2014;14(4):271–6.  https://doi.org/10.1016/j.clml.2013.12.016.PubMedCrossRefGoogle Scholar
  9. 9.
    Chiaretti S, Marinelli M, del Giudice I, Bonina S, Piciocchi A, Messina M, et al. NOTCH1, SF3B1, BIRC3 and TP53 mutations in patients with chronic lymphocytic leukemia undergoing first-line treatment: correlation with biological parameters and response to treatment. Leuk Lymphoma. 2014;55(12):2785–92.  https://doi.org/10.3109/10428194.2014.898760.PubMedCrossRefGoogle Scholar
  10. 10.
    Foa R, del Giudice I, Guarini A, Rossi D, Gaidano G. Clinical implications of the molecular genetics of chronic lymphocytic leukemia. Haematologica. 2013;98(5):675–85.  https://doi.org/10.3324/haematol.2012.069369.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wierda WG, O’Brien S, Wang X, Faderl S, Ferrajoli A, Do KA, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679–85.  https://doi.org/10.1182/blood-2005-12-051458.PubMedCrossRefGoogle Scholar
  12. 12.
    Pflug N, Bahlo J, Shanafelt TD, Eichhorst BF, Bergmann MA, Elter T, et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood. 2014;124(1):49–62.  https://doi.org/10.1182/blood-2014-02-556399.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    • Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247–54.  https://doi.org/10.1182/blood-2014-01-546150. Predictive biomarkers for response to frontline chemo-immunotherapy. PubMedCrossRefGoogle Scholar
  14. 14.
    Gentile M, Mauro FR, Rossi D, Vincelli I, Tripepi G, Recchia AG, et al. Italian external and multicentric validation of the MD Anderson Cancer Center nomogram and prognostic index for chronic lymphocytic leukaemia patients: analysis of 1502 cases. Br J Haematol. 2014;167(2):224–32.  https://doi.org/10.1111/bjh.13032.PubMedCrossRefGoogle Scholar
  15. 15.
    Bulian P, Tarnani M, Rossi D, Forconi F, del Poeta G, Bertoni F, et al. Multicentre validation of a prognostic index for overall survival in chronic lymphocytic leukaemia. Hematol Oncol. 2011;29(2):91–9.  https://doi.org/10.1002/hon.959.PubMedCrossRefGoogle Scholar
  16. 16.
    Molica S, Shanafelt TD, Giannarelli D, Gentile M, Mirabelli R, Cutrona G, et al. The chronic lymphocytic leukemia international prognostic index predicts time to first treatment in early CLL: independent validation in a prospective cohort of early stage patients. Am J Hematol. 2016;91(11):1090–5.  https://doi.org/10.1002/ajh.24493.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nabhan C, Mato A, Flowers CR, Grinblatt DL, Lamanna N, Weiss MA, et al. Characterizing and prognosticating chronic lymphocytic leukemia in the elderly: prospective evaluation on 455 patients treated in the United States. BMC Cancer. 2017;17(1):198.  https://doi.org/10.1186/s12885-017-3176-x.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lin KI, Tam CS, Keating MJ, Wierda WG, O’Brien S, Lerner S, et al. Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens. Blood. 2009;113(14):3168–71.  https://doi.org/10.1182/blood-2008-10-184853.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    • Dohner H, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.  https://doi.org/10.1056/NEJM200012283432602. Heirarchial classification based on prognostic impact of chromosomal abnormalities on CLL. PubMedCrossRefGoogle Scholar
  20. 20.
    Nelson BP, Gupta R, Dewald GW, Paternoster SF, Rosen ST, Peterson LAC. Chronic lymphocytic leukemia FISH panel: impact on diagnosis. Am J Clin Pathol. 2007;128(2):323–32.  https://doi.org/10.1309/21TN2RUWKR827UW2.PubMedCrossRefGoogle Scholar
  21. 21.
    Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. Biomed Res Int. 2014;2014:435983.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.PubMedGoogle Scholar
  23. 23.
    Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–9.  https://doi.org/10.1182/blood.V99.3.1023.PubMedCrossRefGoogle Scholar
  24. 24.
    Delgado J, Espinet B, Oliveira AC, Abrisqueta P, de la Serna J, Collado R, et al. Chronic lymphocytic leukaemia with 17p deletion: a retrospective analysis of prognostic factors and therapy results. Br J Haematol. 2012;157(1):67–74.  https://doi.org/10.1111/j.1365-2141.2011.09000.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Wawrzyniak E, Kotkowska A, Blonski JZ, Siemieniuk-Rys M, Ziolkowska E, Giannopoulos K, et al. Clonal evolution in CLL patients as detected by FISH versus chromosome banding analysis, and its clinical significance. Eur J Haematol. 2014;92(2):91–101.  https://doi.org/10.1111/ejh.12215.PubMedCrossRefGoogle Scholar
  26. 26.
    Stilgenbauer S, Zenz T, Winkler D, Bühler A, Schlenk RF, Groner S, et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2009;27(24):3994–4001.  https://doi.org/10.1200/JCO.2008.21.1128.PubMedCrossRefGoogle Scholar
  27. 27.
    Quijano S, et al. Impact of trisomy 12, del(13q), del(17p), and del(11q) on the immunophenotype, DNA ploidy status, and proliferative rate of leukemic B-cells in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74(3):139–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Rassenti LZ, Jain S, Keating MJ, Wierda WG, Grever MR, Byrd JC, et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood. 2008;112(5):1923–30.  https://doi.org/10.1182/blood-2007-05-092882.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Krober A, et al. Additional genetic high-risk features such as 11q deletion, 17p deletion, and V3-21 usage characterize discordance of ZAP-70 and VH mutation status in chronic lymphocytic leukemia. J Clin Oncol. 2006;24(6):969–75.  https://doi.org/10.1200/JCO.2005.03.7184.PubMedCrossRefGoogle Scholar
  30. 30.
    Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714–26.  https://doi.org/10.1016/j.cell.2013.01.019.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tam CS, Shanafelt TD, Wierda WG, Abruzzo LV, van Dyke DL, O’Brien S, et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood. 2009;114(5):957–64.  https://doi.org/10.1182/blood-2009-03-210591.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    • Hallek, M., Fischer K., Fingerle-Rowson G., Fink A.M., Busch R., Mayer J., Hensel M., Hopfinger G., Hess G., von Grünhagen U., Bergmann M., Catalano J., Zinzani P.L., Caligaris-Cappio F., Seymour J.F., Berrebi A., Jäger U., Cazin B., Trneny M., Westermann A., Wendtner C.M., Eichhorst B.F., Staib P., Bühler A., Winkler D., Zenz T., Böttcher S., Ritgen M., Mendila M., Kneba M., Döhner H., Stilgenbauer S., Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet, 2010. 376(9747): p. 1164–1174.  https://doi.org/10.1016/S0140-6736(10)61381-5. Predictive biomarkers for response to frontline chemo-immunotherapy.
  33. 33.
    •• Rossi D, Terzi-di-Bergamo L, de Paoli L, Cerri M, Ghilardi G, Chiarenza A, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126(16):1921–4.  https://doi.org/10.1182/blood-2015-05-647925. Prognostic biomarkers for survival to frontine chemo-immunotherapy. PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Badoux XC, Keating MJ, Wang X, O’Brien SM, Ferrajoli A, Faderl S, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood. 2011;117(11):3016–24.  https://doi.org/10.1182/blood-2010-08-304683.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zenz T, et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia. 2010;24(12):2072–9.  https://doi.org/10.1038/leu.2010.208.PubMedCrossRefGoogle Scholar
  36. 36.
    Marasca R, Maffei R, Martinelli S, Fiorcari S, Bulgarelli J, Debbia G, et al. Clinical heterogeneity of de novo 11q deletion chronic lymphocytic leukaemia: prognostic relevance of extent of 11q deleted nuclei inside leukemic clone. Hematol Oncol. 2013;31(2):88–95.  https://doi.org/10.1002/hon.2028.PubMedCrossRefGoogle Scholar
  37. 37.
    Wierda WG, O’Brien S, Wang X, Faderl S, Ferrajoli A, Do KA, et al. Multivariable model for time to first treatment in patients with chronic lymphocytic leukemia. J Clin Oncol. 2011;29(31):4088–95.  https://doi.org/10.1200/JCO.2010.33.9002.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rose-Zerilli MJ, et al. ATM mutation rather than BIRC3 deletion and/or mutation predicts reduced survival in 11q-deleted chronic lymphocytic leukemia: data from the UK LRF CLL4 trial. Haematologica. 2014;99(4):736–42.  https://doi.org/10.3324/haematol.2013.098574.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood. 2012;119(12):2854–62.  https://doi.org/10.1182/blood-2011-12-395673.PubMedCrossRefGoogle Scholar
  40. 40.
    Dohner H, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997;89(7):2516–22.PubMedGoogle Scholar
  41. 41.
    Else M, Wade R, Oscier D, Catovsky D. The long-term outcome of patients in the LRF CLL4 trial: the effect of salvage treatment and biological markers in those surviving 10 years. Br J Haematol. 2016;172(2):228–37.  https://doi.org/10.1111/bjh.13824.PubMedCrossRefGoogle Scholar
  42. 42.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.  https://doi.org/10.1073/pnas.242606799.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442–51.  https://doi.org/10.1038/sj.leu.2404935.PubMedCrossRefGoogle Scholar
  44. 44.
    Jaglowski SM, Ruppert AS, Heerema NA, Bingman A, Flynn JM, Grever MR, et al. Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82–7.  https://doi.org/10.1111/j.1365-2141.2012.09239.x.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–55.  https://doi.org/10.1002/ajh.23618.PubMedCrossRefGoogle Scholar
  46. 46.
    Van Den Neste E, Robin V, Francart J, Hagemeijer A, Stul M, Vandenberghe P, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715–22.  https://doi.org/10.1038/sj.leu.2404764.CrossRefGoogle Scholar
  47. 47.
    Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA, et al. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia. 2012;26(6):1442–4.  https://doi.org/10.1038/leu.2011.375.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dicker F, et al. In CLL with complex aberrant karyotype distinct entities can be deciphered by molecular genetic and cytogenetic parameters. Blood. 2008;112(11):3138.Google Scholar
  49. 49.
    Nguyen-Khac F, et al. Mutational and cytogenetic analyses of 177 CLL patients with trisomy 12: a retrospective study of the CLL French Intergroup. Blood. 2013;122(21):4144.Google Scholar
  50. 50.
    Sellmann L, Gesk S, Walter C, Ritgen M, Harder L, Martín-Subero JI, et al. Trisomy 19 is associated with trisomy 12 and mutated IGHV genes in B-chronic lymphocytic leukaemia. Br J Haematol. 2007;138(2):217–20.  https://doi.org/10.1111/j.1365-2141.2007.06636.x.PubMedCrossRefGoogle Scholar
  51. 51.
    Falisi E, Novella E, Visco C, Guercini N, Maura F, Giaretta I, et al. B-cell receptor configuration and mutational analysis of patients with chronic lymphocytic leukaemia and trisomy 12 reveal recurrent molecular abnormalities. Hematol Oncol. 2014;32(1):22–30.  https://doi.org/10.1002/hon.2086.PubMedCrossRefGoogle Scholar
  52. 52.
    Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119(2):329–31.  https://doi.org/10.1182/blood-2011-10-386144.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res. 2008;68(4):1012–21.  https://doi.org/10.1158/0008-5472.CAN-07-3105.PubMedCrossRefGoogle Scholar
  54. 54.
    Reddy KS. Chronic lymphocytic leukaemia profiled for prognosis using a fluorescence in situ hybridisation panel. Br J Haematol. 2006;132(6):705–22.  https://doi.org/10.1111/j.1365-2141.2005.05919.x.PubMedCrossRefGoogle Scholar
  55. 55.
    Puiggros A, Delgado J, Rodriguez-Vicente A, Collado R, Aventín A, Luño E, et al. Biallelic losses of 13q do not confer a poorer outcome in chronic lymphocytic leukaemia: analysis of 627 patients with isolated 13q deletion. Br J Haematol. 2013;163(1):47–54.  https://doi.org/10.1111/bjh.12479.PubMedCrossRefGoogle Scholar
  56. 56.
    Garg R, Wierda W, Ferrajoli A, Abruzzo L, Pierce S, Lerner S, et al. The prognostic difference of monoallelic versus biallelic deletion of 13q in chronic lymphocytic leukemia. Cancer. 2012;118(14):3531–7.  https://doi.org/10.1002/cncr.26593.PubMedCrossRefGoogle Scholar
  57. 57.
    Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.  https://doi.org/10.1016/j.ccr.2009.11.019.PubMedCrossRefGoogle Scholar
  58. 58.
    Van Dyke DL, Shanafelt TD, Call TG, Zent CS, Smoley SA, Rabe KG, et al. A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia. Br J Haematol. 2010;148(4):544–50.  https://doi.org/10.1111/j.1365-2141.2009.07982.x.PubMedCrossRefGoogle Scholar
  59. 59.
    Orlandi EM, Bernasconi P, Pascutto C, Giardini I, Cavigliano PM, Boni M, et al. Chronic lymphocytic leukemia with del13q14 as the sole abnormality: dynamic prognostic estimate by interphase-FISH. Hematol Oncol. 2013;31(3):136–42.  https://doi.org/10.1002/hon.2032.PubMedCrossRefGoogle Scholar
  60. 60.
    Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8):1403–12.  https://doi.org/10.1182/blood-2012-09-458265.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    International, C.L.L.I.P.I.w.g. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90.CrossRefGoogle Scholar
  62. 62.
    Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15(3):995–1004.  https://doi.org/10.1158/1078-0432.CCR-08-1630.PubMedCrossRefGoogle Scholar
  63. 63.
    Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 2010;28(29):4473–9.  https://doi.org/10.1200/JCO.2009.27.8762.PubMedCrossRefGoogle Scholar
  64. 64.
    Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes E, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29(16):2223–9.  https://doi.org/10.1200/JCO.2010.32.0838.PubMedCrossRefGoogle Scholar
  65. 65.
    Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139–47.  https://doi.org/10.1182/blood-2013-11-539726.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Suresh S, Irvine AE. The NOTCH signaling pathway in normal and malignant blood cell production. J Cell Commun Signal. 2015;9(1):5–13.  https://doi.org/10.1007/s12079-015-0271-0.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208(7):1389–401.  https://doi.org/10.1084/jem.20110921.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2012;119(2):521–9.  https://doi.org/10.1182/blood-2011-09-379966.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Oscier DG, Rose-Zerilli MJJ, Winkelmann N, Gonzalez de Castro D, Gomez B, Forster J, et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood. 2013;121(3):468–75.  https://doi.org/10.1182/blood-2012-05-429282.PubMedCrossRefGoogle Scholar
  70. 70.
    Willander K, Dutta RK, Ungerbäck J, Gunnarsson R, Juliusson G, Fredrikson M, et al. NOTCH1 mutations influence survival in chronic lymphocytic leukemia patients. BMC Cancer. 2013;13(1):274.  https://doi.org/10.1186/1471-2407-13-274.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bo MD, del Principe MI, Pozzo F, Ragusa D, Bulian P, Rossi D, et al. NOTCH1 mutations identify a chronic lymphocytic leukemia patient subset with worse prognosis in the setting of a rituximab-based induction and consolidation treatment. Ann Hematol. 2014;93(10):1765–74.  https://doi.org/10.1007/s00277-014-2117-x.PubMedCrossRefGoogle Scholar
  72. 72.
    Bittolo T, Pozzo F, Bomben R, D’Agaro T, Bravin V, Bulian P, et al. Mutations in the 3′ untranslated region of NOTCH1 are associated with low CD20 expression levels chronic lymphocytic leukemia. Haematologica. 2017;102(8):e305–9.  https://doi.org/10.3324/haematol.2016.162594.PubMedCrossRefGoogle Scholar
  73. 73.
    Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, de Laurentiis EI, Sharma K, et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol Cell. 2016;64(2):307–19.  https://doi.org/10.1016/j.molcel.2016.08.036.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–506.  https://doi.org/10.1056/NEJMoa1109016.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44(1):47–52.  https://doi.org/10.1038/ng.1032.PubMedCrossRefGoogle Scholar
  76. 76.
    Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood. 2011;118(26):6904–8.  https://doi.org/10.1182/blood-2011-08-373159.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood. 2005;106(9):3175–82.  https://doi.org/10.1182/blood-2004-11-4516.PubMedCrossRefGoogle Scholar
  78. 78.
    Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25(34):5448–57.  https://doi.org/10.1200/JCO.2007.11.2649.PubMedCrossRefGoogle Scholar
  79. 79.
    Rossi D, Gaidano G. ATM and chronic lymphocytic leukemia: mutations, and not only deletions, matter. Haematologica. 2012;97(1):5–8.  https://doi.org/10.3324/haematol.2011.057109.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE. The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett. 1997;402(1):81–4.  https://doi.org/10.1016/S0014-5793(96)01506-2.PubMedCrossRefGoogle Scholar
  81. 81.
    Baliakas P, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29(2):329–36.  https://doi.org/10.1038/leu.2014.196.PubMedCrossRefGoogle Scholar
  82. 82.
    Martinez-Trillos A, Pinyol M, Navarro A, Aymerich M, Jares P, Juan M, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood. 2014;123(24):3790–6.  https://doi.org/10.1182/blood-2013-12-543306.PubMedCrossRefGoogle Scholar
  83. 83.
    Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804–15.  https://doi.org/10.1056/NEJMra041720.PubMedCrossRefGoogle Scholar
  84. 84.
    Krober A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100(4):1410–6.PubMedGoogle Scholar
  85. 85.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig VH genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.PubMedGoogle Scholar
  86. 86.
    Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D, et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica. 2007;92(9):1242–5.  https://doi.org/10.3324/haematol.10720.PubMedCrossRefGoogle Scholar
  87. 87.
    Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15.  https://doi.org/10.1182/blood-2015-06-651125.PubMedCrossRefGoogle Scholar
  88. 88.
    Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42.  https://doi.org/10.1016/S1470-2045(16)30051-1.PubMedCrossRefGoogle Scholar
  89. 89.
    Jain P, et al. The absolute percent deviation of IGHV mutation rather than a 98% cut-off predicts survival of chronic lymphocytic leukaemia patients treated with fludarabine, cyclophosphamide and rituximab. Br J Haematol. 2017.Google Scholar
  90. 90.
    Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood. 2011;118(13):3470–8.  https://doi.org/10.1182/blood-2011-06-275610.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    D’Arena G, et al. CD38 expression correlates with adverse biological features and predicts poor clinical outcome in B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2001;42(1–2):109–14.  https://doi.org/10.3109/10428190109097682.PubMedCrossRefGoogle Scholar
  92. 92.
    Del Poeta G, Maurillo L, Venditti A, Buccisano F, Epiceno AM, Capelli G, et al. Clinical significance of CD38 expression in chronic lymphocytic leukemia. Blood. 2001;98(9):2633–9.  https://doi.org/10.1182/blood.V98.9.2633.PubMedCrossRefGoogle Scholar
  93. 93.
    Durig J, et al. CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia. 2002;16(1):30–5.  https://doi.org/10.1038/sj.leu.2402339.PubMedCrossRefGoogle Scholar
  94. 94.
    Del Poeta, G., del Principe M.I., Irno Consalvo M.A., Maurillo L., Buccisano F., Venditti A., Mazzone C., Bruno A., Gianní L., Capelli G., Lo Coco F., Cantonetti M., Gattei V., Amadori S., The addition of rituximab to fludarabine improves clinical outcome in untreated patients with ZAP-70-negative chronic lymphocytic leukemia. Cancer, 2005. 104(12): p. 2743–2752, DOI:  https://doi.org/10.1002/cncr.21535.
  95. 95.
    Ghia P, Guida G, Stella S, Gottardi D, Geuna M, Strola G, et al. The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood. 2003;101(4):1262–9.  https://doi.org/10.1182/blood-2002-06-1801.PubMedCrossRefGoogle Scholar
  96. 96.
    Ibrahim S, Keating M, Do KA, O’Brien S, Huh YO, Jilani I, et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood. 2001;98(1):181–6.  https://doi.org/10.1182/blood.V98.1.181.PubMedCrossRefGoogle Scholar
  97. 97.
    Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101(12):4944–51.  https://doi.org/10.1182/blood-2002-10-3306.PubMedCrossRefGoogle Scholar
  98. 98.
    Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609–14.  https://doi.org/10.1182/blood-2002-06-1683.PubMedCrossRefGoogle Scholar
  99. 99.
    Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348(18):1764–75.  https://doi.org/10.1056/NEJMoa023143.PubMedCrossRefGoogle Scholar
  100. 100.
    Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004;351(9):893–901.  https://doi.org/10.1056/NEJMoa040857.PubMedCrossRefGoogle Scholar
  101. 101.
    Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21.  https://doi.org/10.1002/cncr.29566.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    • Anderson MA, et al. Clinico-pathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017; Prognostic biomarkers for survival to venetoclax monotherapy in R/R CLL. Google Scholar
  103. 103.
    Woyach JA. How I manage ibrutinib-refractory chronic lymphocytic leukemia. Blood. 2017;129(10):1270–4.  https://doi.org/10.1182/blood-2016-09-693598.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.  https://doi.org/10.1056/NEJMoa1400376.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Byrd JC, O’Brien S, James DF. Ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(13):1278–9.  https://doi.org/10.1056/NEJMc1309710.PubMedGoogle Scholar
  106. 106.
    Amin N, et al. Cell-intrinsic determinants of ibrutinib-induced apoptosis in chronic lymphocytic leukemia. Clin Cancer Res. 2016;Google Scholar
  107. 107.
    Thompson PA, O’Brien SM, Xiao L, Wang X, Burger JA, Jain N, et al. beta2 -microglobulin normalization within 6 months of ibrutinib-based treatment is associated with superior progression-free survival in patients with chronic lymphocytic leukemia. Cancer. 2016;122(4):565–73.  https://doi.org/10.1002/cncr.29794.PubMedCrossRefGoogle Scholar
  108. 108.
    •• Keating MJ, O’Brien S, Albitar M, Lerner S, Plunkett W, Giles F, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23(18):4079–88.  https://doi.org/10.1200/JCO.2005.12.051. Predictive biomarkers for response to frontline chemo-immunotherapy. PubMedCrossRefGoogle Scholar
  109. 109.
    •• Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.  https://doi.org/10.1056/NEJMoa1215637. Predictive biomarkers for response to ibrutinib monotherapy in R/R CLL. PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    •• Sharman JP, et al. Second interim analysis of a phase 3 study of idelalisib (ZYDELIG®) plus rituximab (R) for relapsed chronic lymphocytic leukemia (CLL): efficacy analysis in patient subpopulations with del(17p) and other adverse prognostic factors. Blood. 2014;124(21):330. Biomarkers for response and survival with idelalisib and rituximab in R/R CLL. Google Scholar
  111. 111.
    Thompson PA, Tam CS, OBrien SM, Wierda WG, Stingo F, Plunkett W, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9.  https://doi.org/10.1182/blood-2015-09-667675.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    •• Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22.  https://doi.org/10.1056/NEJMoa1513257. Predictive biomarkers for response to venetoclax monotherapy in R/R CLL. PubMedCrossRefGoogle Scholar
  113. 113.
    • Stilgenbauer S, Buggy JJ, Coutre S, et al. Outcome of ibrutinib treatment by baseline genetic features in patients with relapsed or refractory CLL/SLL with del(17p) in the RESONATE-17 study. ASH. 2015;2015:833. Predictive biomarkers for response to ibrutinib monotherapy in R/R CLL. Google Scholar
  114. 114.
    Admirand JH, Knoblock RJ, Coombes KR, Tam C, Schlette EJ, Wierda WG, et al. Immunohistochemical detection of ZAP70 in chronic lymphocytic leukemia predicts immunoglobulin heavy chain gene mutation status and time to progression. Mod Pathol. 2010;23(11):1518–23.  https://doi.org/10.1038/modpathol.2010.131.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    • Susan O’Brien RF, Coutre S, Flinn I, Burger J, Blum K, Sharman J, Wierda W, Jones J, Zhao W, Heerema N, Johnson A, Luan Y, James D, Chu A, Byrd J. Five-year experience with single-agent ibrutinib in patients with previously untreated and relapsed/refractory chronic lymphocytic leukemia/small lymphocytic leukemia. Am Soc Hematol. Abstract#233. 2016. Prognostic biomarkers for survival to ibrutinib monotherapy in R/R CLL. Google Scholar
  116. 116.
    Zenz T, et al. TP53 mutations and outcome after fludarabine and cyclophosphamide (FC) or FC plus rituximab (FCR) in the CLL8 trial of the GCLLSG. Blood. 2009;114(22):1267.Google Scholar
  117. 117.
    Diop F, Moia R, Favini C, Spaccarotella E, De Paoli L, Bruscaggin A. BRAF and BIRC3 mutations stratify a poor prognostic subgroup in FCR treated chronic lymphocytic leukemia. ASH meeting. Abstract# 260, 2017.Google Scholar
  118. 118.
    Worcester S. Ibrutinib response in CLL/SLL less affected by select risk factors. 2017. Available from: http://www.mdedge.com/hematologynews/article/138642/cll/ibrutinib-response-cll/sll-less-affected-select-risk-factors.
  119. 119.
    Brown JR. The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia. Semin Oncol. 2016;43(2):260–4.  https://doi.org/10.1053/j.seminoncol.2016.02.004.PubMedCrossRefGoogle Scholar
  120. 120.
    Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7.  https://doi.org/10.1182/blood-2013-11-535047.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.  https://doi.org/10.1056/NEJMoa1315226.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Stilgenbauer S, Coutre S, Furman RR, et al. Efficacy of idelalisib in cll subpopulations harboring del(17p) and other adverse prognostic factors: results from a phase 3, randomized, double-blind, placebo-controlled trial. EHA Congress Abstracts 2014. 2014; p.:S1341.Google Scholar
  123. 123.
    O’Brien SM, Lamanna N, Kipps TJ, Flinn I, Zelenetz AD, Burger JA, et al. A phase 2 study of idelalisib plus rituximab in treatment-naive older patients with chronic lymphocytic leukemia. Blood. 2015;126(25):2686–94.  https://doi.org/10.1182/blood-2015-03-630947.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Barrientos JC, Coutre S, De Vos S, et al., Long-term follow-up of a phase 1b trial of idelalisib in combination with chemoimmunotherapy in patients with relapsed/refractory chronic lymphocytic leukemia including patients with del(17p)/TP53 mutation. J Clin Oncol (ASCO Annual Meeting), 2015. 33((Suppl):abstr 7011).Google Scholar
  125. 125.
    Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8.  https://doi.org/10.1038/nm.3048.PubMedCrossRefGoogle Scholar
  126. 126.
    Seymour JF, Ma S, Brander DM, Choi MY, Barrientos J, Davids MS, et al. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol. 2017;18(2):230–40.  https://doi.org/10.1016/S1470-2045(17)30012-8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17(6):768–78.  https://doi.org/10.1016/S1470-2045(16)30019-5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of LeukemiaThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations