Updates of Peripheral T Cell Lymphomas Based on the 2017 WHO Classification

T-Cell and Other Lymphoproliferative Malignancies (J Zain, Section Editor)
Part of the following topical collections:
  1. Topical Collection on T-Cell and Other Lymphoproliferative Malignancies

Abstract

Purpose of Review

This review will describe and update the readers on the recent changes of the 2017 WHO classification in regard to peripheral T cell lymphomas.

Recent Findings

Significant advances in molecular studies have resulted in revisions of the classification as well as introduction of provisional entities (such as breast implant-associated ALCL, nodal PTCL with TFH phenotype).

Summary

Major advances in molecular and gene expression profiling have expanded our knowledge of T cell lymphomas, including updates in the diagnostic criteria and sub-classification which will facilitate in improving patient care and research.

Keywords

Peripheral T cell lymphoma Classification Molecular Pathology 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Swerdlow SH, Campo E, Harris NL, et al. WHO classification of Tumours of Haematopoietic and Lymphoid Tissues (ed revised 4th): International Agency for Research on Cancer Lyon; 2017. This reference was particularly of interest because it highlights updates as well as the theory behind the changes in the classification for 2017 described by the Editors of the WHO. Google Scholar
  2. 2.
    Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.  https://doi.org/10.1200/JCO.2008.16.4558.CrossRefPubMedGoogle Scholar
  3. 3.
    Hsi ED, Said J, Macon WR, et al. Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project. Am J Surg Pathol. 2014;38(6):768–75.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    •• Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–23. This article is also of higher interest because it studied gene expression profiles of over 350 PTCLs and identified to major molecular subgroups that are important for prognosis (GATA3 and TBX21). CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Attygalle AD, Cabecadas J, Gaulard P, et al. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward - report on the lymphoma workshop of the XVIth meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology. 2014;64(2):171–99.CrossRefPubMedGoogle Scholar
  7. 7.
    Huang Y, Moreau A, Dupuis J, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33(5):682–90.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rodriguez-Pinilla SM, Atienza L, Murillo C, et al. Peripheral T-cell lymphoma with follicular T-cell markers. Am J Surg Pathol. 2008;32(12):1787–99.CrossRefPubMedGoogle Scholar
  9. 9.
    Hu S, Young KH, Konoplev SN, Medeiros LJ. Follicular T-cell lymphoma: a member of an emerging family of follicular helper T-cell derived T-cell lymphomas. Hum Pathol. 2012;43(11):1789–98.  https://doi.org/10.1016/j.humpath.2012.05.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Odejide O, Weigert O, Lane AA, et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014;123(9):1293–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lemonnier F, Couronne L, Parrens M, et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012;120(7):1466–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Ondrejka SL, Grzywacz B, Bodo J, et al. Angioimmunoblastic T-cell lymphomas with the RHOA p.Gly17Val mutation have classic clinical and pathologic features. Am J Surg Pathol. 2016;40(3):335–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Jaffe ES, Nicolae A, Pittaluga S. Peripheral T-cell and NK-cell lymphomas in the WHO classification: pearls and pitfalls. Mod Pathol. 2013;26(Suppl 1):S71–87.  https://doi.org/10.1038/modpathol.2012.181.CrossRefPubMedGoogle Scholar
  14. 14.
    Attygalle AD, Kyriakou C, Dupuis J, et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol. 2007;31(7):1077–88.CrossRefPubMedGoogle Scholar
  15. 15.
    Rodriguez-Justo M, Attygalle AD, Munson P, Roncador G, Marafioti T, Piris MA. Angioimmunoblastic T-cell lymphoma with hyperplastic germinal centres: a neoplasia with origin in the outer zone of the germinal centre? Clinicopathological and immunohistochemical study of 10 cases with follicular T-cell markers. Mod Pathol. 2009;22(6):753–61.  https://doi.org/10.1038/modpathol.2009.12.CrossRefPubMedGoogle Scholar
  16. 16.
    Nicolae A, Pittaluga S, Venkataraman G, et al. Peripheral T-cell lymphomas of follicular T-helper cell derivation with Hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol. 2013;37(6):816–26.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zettl A, Lee S, Rudiger T, et al. Epstein-Barr virus-associated B-cell lymphoproliferative disorders in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified. Am J Clin Pathol. 2002;117(3):368–79.CrossRefPubMedGoogle Scholar
  18. 18.
    Federico M, Rudiger T, Bellei M, et al. Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J Clin Oncol. 2013;31(2):240–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Agostinelli C, Hartmann S, Klapper W, et al. Peripheral T cell lymphomas with follicular T helper phenotype: a new basket or a distinct entity? Revising Karl Lennert’s personal archive. Histopathology. 2011;59(4):679–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Moroch J, Copie-Bergman C, de Leval L, et al. Follicular peripheral T-cell lymphoma expands the spectrum of classical Hodgkin lymphoma mimics. Am J Surg Pathol. 2012;36(11):1636–46.CrossRefPubMedGoogle Scholar
  21. 21.
    de Leval L, Rickman DS, Thielen C, Reynies A, Huang YL, Delsol G, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109(11):4952–63.  https://doi.org/10.1182/blood-2006-10-055145.CrossRefPubMedGoogle Scholar
  22. 22.
    Dobay MP, Lemonnier F, Missiaglia E, et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica. 2017;102(4):e148–51.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Palomero T, Couronne L, Khiabanian H, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet. 2014;46(2):166–70.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang C, McKeithan TW, Gong Q, Zhang W, Bouska A, Rosenwald A, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood. 2015;126(15):1741–52.  https://doi.org/10.1182/blood-2015-05-644591.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S, et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(4):371–5.  https://doi.org/10.1038/ng.2916.CrossRefPubMedGoogle Scholar
  27. 27.
    Quivoron C, Couronne L, Della Valle V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20(1):25–38.  https://doi.org/10.1016/j.ccr.2011.06.003.CrossRefPubMedGoogle Scholar
  28. 28.
    Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood. 2012;119(8):1901–3.  https://doi.org/10.1182/blood-2011-11-391748.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20(2):313–8.  https://doi.org/10.1038/sj.leu.2404045.CrossRefPubMedGoogle Scholar
  30. 30.
    Dierks C, Adrian F, Fisch P, et al. The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res. 2010;70(15):6193–204.CrossRefPubMedGoogle Scholar
  31. 31.
    Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2013;37(9):1456–7.  https://doi.org/10.1097/PAS.0b013e3182991415.CrossRefPubMedGoogle Scholar
  32. 32.
    Rizvi MA, Evens AM, Tallman MS, Nelson BP, Rosen ST. T-cell non-Hodgkin lymphoma. Blood. 2006;107(4):1255–64.  https://doi.org/10.1182/blood-2005-03-1306.CrossRefPubMedGoogle Scholar
  33. 33.
    Menon MP, Nicolae A, Meeker H, et al. Primary CNS T-cell lymphomas: a clinical, morphologic, Immunophenotypic, and molecular analysis. Am J Surg Pathol. 2015;39(12):1719–29.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hayashi E, Takata K, Sato Y, Tashiro Y, Tachiyama Y, Sawada-Kitamura S, et al. Distinct morphologic, phenotypic, and clinical-course characteristics of indolent peripheral T-cell lymphoma. Hum Pathol. 2013;44(9):1927–36.  https://doi.org/10.1016/j.humpath.2013.03.002.CrossRefPubMedGoogle Scholar
  35. 35.
    Bellei M, Sabattini E, Pesce EA, et al. Pitfalls and major issues in the histologic diagnosis of peripheral T-cell lymphomas: results of the central review of 573 cases from the T-Cell Project, an international, cooperative study. Hematol Oncol. 2016.Google Scholar
  36. 36.
    Swerdlow SH, Jaffe ES, Brousset P, Chan JK, de Leval L, Gaulard P, et al. Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies. Am J Surg Pathol. 2014;38(10):e60–71.  https://doi.org/10.1097/PAS.0000000000000295.CrossRefPubMedGoogle Scholar
  37. 37.
    Went P, Agostinelli C, Gallamini A, Piccaluga PP, Ascani S, Sabattini E, et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol. 2006;24(16):2472–9.  https://doi.org/10.1200/JCO.2005.03.6327.CrossRefPubMedGoogle Scholar
  38. 38.
    Sabattini E, Pizzi M, Tabanelli V, et al. CD30 expression in peripheral T-cell lymphomas. Haematologica. 2013;98(8):e81–2.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barry TS, Jaffe ES, Sorbara L, Raffeld M, Pittaluga S. Peripheral T-cell lymphomas expressing CD30 and CD15. Am J Surg Pathol. 2003;27(12):1513–22.  https://doi.org/10.1097/00000478-200312000-00003.CrossRefPubMedGoogle Scholar
  40. 40.
    Geissinger E, Odenwald T, Lee SS, et al. Nodal peripheral T-cell lymphomas and, in particular, their lymphoepithelioid (Lennert’s) variant are often derived from CD8(+) cytotoxic T-cells. Virchows Arch. 2004;445(4):334–43.CrossRefPubMedGoogle Scholar
  41. 41.
    Hartmann S, Agostinelli C, Klapper W, et al. Revising the historical collection of epithelioid cell-rich lymphomas of the Kiel lymph node registry: what is Lennert's lymphoma nowadays? Histopathology. 2011;59(6):1173–82.CrossRefPubMedGoogle Scholar
  42. 42.
    Ha SY, Sung J, Ju H, Karube K, Kim SJ, Kim WS, et al. Epstein-Barr virus-positive nodal peripheral T cell lymphomas: clinicopathologic and gene expression profiling study. Pathol Res Pract. 2013;209(7):448–54.  https://doi.org/10.1016/j.prp.2013.04.013.CrossRefPubMedGoogle Scholar
  43. 43.
    Swerdlow SH. T-cell and NK-cell posttransplantation lymphoproliferative disorders. Am J Clin Pathol. 2007;127(6):887–95.  https://doi.org/10.1309/LYXN3RGF7D7KPYG0.CrossRefPubMedGoogle Scholar
  44. 44.
    Piccaluga PP, Fuligni F, De Leo A, et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. J Clin Oncol. 2013;31(24):3019–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Laginestra MA, Piccaluga PP, Fuligni F, Rossi M, Agostinelli C, Righi S, et al. Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified. Blood Cancer J. 2014;4(11):259.  https://doi.org/10.1038/bcj.2014.78.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu C, Iqbal J, Teruya-Feldstein J, et al. MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood. 2013;122(12):2083–92.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Piva R, Agnelli L, Pellegrino E, et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol. 2010;28(9):1583–90.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang T, Feldman AL, Wada DA, Lu Y, Polk A, Briski R, et al. GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood. 2014;123(19):3007–15.  https://doi.org/10.1182/blood-2013-12-544809.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    •• Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80. This article is of high interest because it describes translocations in ALCL, ALK-negative that were not previously described ( DUSP22 and TP63 ). CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hapgood G, Savage KJ. The biology and management of systemic anaplastic large cell lymphoma. Blood. 2015;126(1):17–25.  https://doi.org/10.1182/blood-2014-10-567461.CrossRefPubMedGoogle Scholar
  51. 51.
    Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.PubMedGoogle Scholar
  52. 52.
    Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol. 2015;22(1):29–49.  https://doi.org/10.1097/PAP.0000000000000047.CrossRefPubMedGoogle Scholar
  53. 53.
    King RL, Dao LN, ED MP, et al. Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol. 2016;40(1):36–43.  https://doi.org/10.1097/PAS.0000000000000500.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Eberle FC, Song JY, Xi L, Raffeld M, Harris NL, Wilson WH, et al. Nodal involvement by cutaneous CD30-positive T-cell lymphoma mimicking classical Hodgkin lymphoma. Am J Surg Pathol. 2012;36(5):716–25.  https://doi.org/10.1097/PAS.0b013e3182487158.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang X, Boddicker RL, Dasari S, Sidhu JS, Kadin ME, Macon WR, et al. Expression of p63 protein in anaplastic large cell lymphoma: implications for genetic subtyping. Hum Pathol. 2017;64:19–27.  https://doi.org/10.1016/j.humpath.2017.01.003.CrossRefPubMedGoogle Scholar
  56. 56.
    Miranda RN, Aladily TN, Prince HM, et al. Breast implant-associated anaplastic large-cell lymphoma: long-term follow-up of 60 patients. J Clin Oncol. 2014;32(2):114–20.  https://doi.org/10.1200/JCO.2013.52.7911.CrossRefPubMedGoogle Scholar
  57. 57.
    Brody GS, Deapen D, Taylor CR, et al. Anaplastic large cell lymphoma occurring in women with breast implants: analysis of 173 cases. Plast Reconstr Surg. 2015;135(3):695–705.CrossRefPubMedGoogle Scholar
  58. 58.
    de Jong D, Vasmel WL, de Boer JP, Verhave G, Barbé E, Casparie MK, et al. Anaplastic large-cell lymphoma in women with breast implants. JAMA. 2008;300(17):2030–5.  https://doi.org/10.1001/jama.2008.585.CrossRefPubMedGoogle Scholar
  59. 59.
    Doren EL, Miranda RN, Selber JC, Garvey PB, Liu J, Medeiros LJ, et al. U.S. epidemiology of breast implant-associated anaplastic large cell lymphoma. Plast Reconstr Surg. 2017;139(5):1042–50.  https://doi.org/10.1097/PRS.0000000000003282.CrossRefPubMedGoogle Scholar
  60. 60.
    Largent J, Oefelein M, Kaplan HM, Okerson T, Boyle P. Risk of lymphoma in women with breast implants: analysis of clinical studies. Eur J Cancer Prev. 2012;21(3):274–80.  https://doi.org/10.1097/CEJ.0b013e328350b0ae.CrossRefPubMedGoogle Scholar
  61. 61.
    Roden AC, Macon WR, Keeney GL, Myers JL, Feldman AL, Dogan A. Seroma-associated primary anaplastic large-cell lymphoma adjacent to breast implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol. 2008;21(4):455–63.  https://doi.org/10.1038/modpathol.3801024.CrossRefPubMedGoogle Scholar
  62. 62.
    Taylor CR, Siddiqi IN, Brody GS. Anaplastic large cell lymphoma occurring in association with breast implants: review of pathologic and immunohistochemical features in 103 cases. Appl Immunohistochem Mol Morphol. 2013;21(1):13–20.  https://doi.org/10.1097/PAI.0b013e318266476c.PubMedGoogle Scholar
  63. 63.
    van Wijk F, Cheroutre H. Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semin Immunol. 2009;21(3):130–8.  https://doi.org/10.1016/j.smim.2009.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Delabie J, Holte H, Vose JM, et al. Enteropathy-associated T-cell lymphoma: clinical and histological findings from the international peripheral T-cell lymphoma project. Blood. 2011;118(1):148–55.CrossRefPubMedGoogle Scholar
  65. 65.
    Tan SY, Chuang SS, Tang T, Tan L, Ko YH, Chuah KL, et al. Type II EATL (epitheliotropic intestinal T-cell lymphoma): a neoplasm of intra-epithelial T-cells with predominant CD8alphaalpha phenotype. Leukemia. 2013;27(8):1688–96.  https://doi.org/10.1038/leu.2013.41.CrossRefPubMedGoogle Scholar
  66. 66.
    Wilson AL, Swerdlow SH, Przybylski GK, Surti U, Choi JK, Campo E, et al. Intestinal gammadelta T-cell lymphomas are most frequently of type II enteropathy-associated T-cell type. Hum Pathol. 2013;44(6):1131–45.  https://doi.org/10.1016/j.humpath.2012.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chan JK, Chan AC, Cheuk W, Wan SK, Lee WK, Lui YH, et al. Type II enteropathy-associated T-cell lymphoma: a distinct aggressive lymphoma with frequent gammadelta T-cell receptor expression. Am J Surg Pathol. 2011;35(10):1557–69.  https://doi.org/10.1097/PAS.0b013e318222dfcd.CrossRefPubMedGoogle Scholar
  68. 68.
    Kikuma K, Yamada K, Nakamura S, et al. Detailed clinicopathological characteristics and possible lymphomagenesis of type II intestinal enteropathy-associated T-cell lymphoma in Japan. Hum Pathol. 2014;45(6):1276–84.CrossRefPubMedGoogle Scholar
  69. 69.
    Deleeuw RJ, Zettl A, Klinker E, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology. 2007;132(5):1902–11.  https://doi.org/10.1053/j.gastro.2007.03.036.CrossRefPubMedGoogle Scholar
  70. 70.
    Perry AM, Warnke RA, Hu Q, Gaulard P, Copie-Bergman C, Alkan S, et al. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Blood. 2013;122(22):3599–606.  https://doi.org/10.1182/blood-2013-07-512830.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Matnani R, Ganapathi KA, Lewis SK, Green PH, Alobeid B, Bhagat G. Indolent T- and NK-cell lymphoproliferative disorders of the gastrointestinal tract: a review and update. Hematol Oncol. 2017;35(1):3–16.  https://doi.org/10.1002/hon.2317.CrossRefPubMedGoogle Scholar
  72. 72.
    Margolskee E, Jobanputra V, Lewis SK, Alobeid B, Green PH, Bhagat G. Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS One. 2013;8(7):e68343.  https://doi.org/10.1371/journal.pone.0068343.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Catassi C, Bearzi I, Holmes GK. Association of celiac disease and intestinal lymphomas and other cancers. Gastroenterology. 2005;128(4 Suppl 1):S79–86.CrossRefPubMedGoogle Scholar
  74. 74.
    Sharaiha RZ, Lebwohl B, Reimers L, Bhagat G, Green PH, Neugut AI. Increasing incidence of enteropathy-associated T-cell lymphoma in the United States, 1973-2008. Cancer. 2012;118(15):3786–92.  https://doi.org/10.1002/cncr.26700.CrossRefPubMedGoogle Scholar
  75. 75.
    Malamut G, Chandesris O, Verkarre V, et al. Enteropathy associated T cell lymphoma in celiac disease: a large retrospective study. Dig Liver Dis. 2013;45(5):377–84.CrossRefPubMedGoogle Scholar
  76. 76.
    van de Water JM, Cillessen SA, Visser OJ, Verbeek WH, Meijer CJ, Mulder CJ. Enteropathy associated T-cell lymphoma and its precursor lesions. Best Pract Res Clin Gastroenterol. 2010;24(1):43–56.  https://doi.org/10.1016/j.bpg.2009.11.002.CrossRefPubMedGoogle Scholar
  77. 77.
    Silano M, Volta U, Vincenzi AD, Dessi M, Vincenzi MD, Collaborating Centers of the Italian Registry of the Complications of Coeliac D. Effect of a gluten-free diet on the risk of enteropathy-associated T-cell lymphoma in celiac disease. Dig Dis Sci. 2008;53(4):972–6.  https://doi.org/10.1007/s10620-007-9952-8.CrossRefPubMedGoogle Scholar
  78. 78.
    Green PH, Cellier C. Celiac disease. N Engl J Med. 2007;357(17):1731–43.  https://doi.org/10.1056/NEJMra071600.CrossRefPubMedGoogle Scholar
  79. 79.
    Megiorni F, Pizzuti A. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: practical implications of the HLA molecular typing. J Biomed Sci. 2012;19(1):88.  https://doi.org/10.1186/1423-0127-19-88.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Malamut G, Afchain P, Verkarre V, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology. 2009;136(1):81–90.CrossRefPubMedGoogle Scholar
  81. 81.
    Amiot A, Allez M, Treton X, et al. High frequency of fatal haemophagocytic lymphohistiocytosis syndrome in enteropathy-associated T cell lymphoma. Dig Liver Dis. 2012;44(4):343–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Berman EL, Zauber NP, Rickert RR, Diss TC, Isaacson PG. Enteropathy-associated T cell lymphoma with brain involvement. J Clin Gastroenterol. 1998;26(4):337–41.  https://doi.org/10.1097/00004836-199806000-00026.CrossRefPubMedGoogle Scholar
  83. 83.
    Gobbi C, Buess M, Probst A, et al. Enteropathy-associated T-cell lymphoma with initial manifestation in the CNS. Neurology. 2003;60(10):1718–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Malamut G, Meresse B, Cellier C, Cerf-Bensussan N. Refractory celiac disease: from bench to bedside. Semin Immunopathol. 2012;34(4):601–13.  https://doi.org/10.1007/s00281-012-0322-z.CrossRefPubMedGoogle Scholar
  85. 85.
    de Mascarel A, Belleannee G, Stanislas S, et al. Mucosal intraepithelial T-lymphocytes in refractory celiac disease: a neoplastic population with a variable CD8 phenotype. Am J Surg Pathol. 2008;32(5):744–51.CrossRefPubMedGoogle Scholar
  86. 86.
    Farstad IN, Johansen FE, Vlatkovic L, Jahnsen J, Scott H, Fausa O, et al. Heterogeneity of intraepithelial lymphocytes in refractory sprue: potential implications of CD30 expression. Gut. 2002;51(3):372–8.  https://doi.org/10.1136/gut.51.3.372.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tack GJ, van Wanrooij RL, Langerak AW, et al. Origin and immunophenotype of aberrant IEL in RCDII patients. Mol Immunol. 2012;50(4):262–70.  https://doi.org/10.1016/j.molimm.2012.01.014.CrossRefPubMedGoogle Scholar
  88. 88.
    Schmitz F, Tjon JM, Lai Y, et al. Identification of a potential physiological precursor of aberrant cells in refractory coeliac disease type II. Gut. 2013;62(4):509–19.  https://doi.org/10.1136/gutjnl-2012-302265.CrossRefPubMedGoogle Scholar
  89. 89.
    Zettl A, Ott G, Makulik A, et al. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol. 2002;161(5):1635–45.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nicolae A, Xi L, Pham TH, et al. Mutations in the JAK/STAT and RAS signaling pathways are common in intestinal T-cell lymphomas. Leukemia. 2016;30(11):2245–7.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kucuk C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 2015;6:6025.  https://doi.org/10.1038/ncomms7025.CrossRefPubMedGoogle Scholar
  92. 92.
    Garcia-Herrera A, Song JY, Chuang SS, Villamor N, Colomo L, Pittaluga S, et al. Nonhepatosplenic gammadelta T-cell lymphomas represent a spectrum of aggressive cytotoxic T-cell lymphomas with a mainly extranodal presentation. Am J Surg Pathol. 2011;35(8):1214–25.  https://doi.org/10.1097/PAS.0b013e31822067d1.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tse E, Gill H, Loong F, et al. Type II enteropathy-associated T-cell lymphoma: a multicenter analysis from the Asia Lymphoma Study Group. Am J Hematol. 2012;87(7):663–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Tan SY, Ooi AS, Ang MK, Koh M, Wong JC, Dykema K, et al. Nuclear expression of MATK is a novel marker of type II enteropathy-associated T-cell lymphoma. Leukemia. 2011;25(3):555–7.  https://doi.org/10.1038/leu.2010.295.CrossRefPubMedGoogle Scholar
  95. 95.
    Chott A, Haedicke W, Mosberger I, et al. Most CD56+ intestinal lymphomas are CD8+CD5-T-cell lymphomas of monomorphic small to medium size histology. Am J Pathol. 1998;153(5):1483–90.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Tomita S, Kikuti YY, Carreras J, Kojima M, Ando K, Takasaki H, et al. Genomic and immunohistochemical profiles of enteropathy-associated T-cell lymphoma in Japan. Mod Pathol. 2015;28(10):1286–96.  https://doi.org/10.1038/modpathol.2015.85.CrossRefPubMedGoogle Scholar
  97. 97.
    Sun J, Lu Z, Yang D, Chen J. Primary intestinal T-cell and NK-cell lymphomas: a clinicopathological and molecular study from China focused on type II enteropathy-associated T-cell lymphoma and primary intestinal NK-cell lymphoma. Mod Pathol. 2011;24(7):983–92.  https://doi.org/10.1038/modpathol.2011.45.CrossRefPubMedGoogle Scholar
  98. 98.
    Nairismagi ML, Tan J, Lim JQ, et al. JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia. 2016;30(6):1311–9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Roberti A, Dobay MP, Bisig B, Vallois D, Boéchat C, Lanitis E, et al. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Nat Commun. 2016;7:12602.  https://doi.org/10.1038/ncomms12602.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyCity of Hope National Medical CenterDuarteUSA

Personalised recommendations