Skip to main content

Advertisement

Log in

Allogeneic Hematopoietic Cell Transplantation for Myeloma: When and in Whom Does It Work

  • Multiple Myeloma (P Kapoor, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The growing list of available therapies for patients with multiple myeloma has resulted in tremendously high response rates and prolonged survival. However, the cure remains elusive. A continued effort at developing strategies to utilize all available treatment modalities in the most effective manner is needed. Allogeneic hematopoietic cell transplantation (allo-HCT) is a robust platform, associated with high response rates, and provides a unique foundation on which immune therapies and novel agents can be employed to improve clinical outcomes. Patients with high-risk myeloma and those relapsing after novel agent-based therapies or early after an autologous HCT should be considered for allo-HCT, ideally in a clinical trial setting. Results from several ongoing studies are expected to provide important information that will help determine the place of allo-HCT in the myeloma treatment algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia. 2012;26(1):149–57.

    Article  CAS  PubMed  Google Scholar 

  3. •• Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol. 2015;33(26):2863–9. This paper presents the most recent version of IMWG consensus criteria for risk stratification. These revised criteria now include the patients’ cytogenetic information; absence of which was a major limitation of the previous criteria.

  4. • Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. Summarizes the IMWG recommendations for the treatment of cytogenetically high-risk myeloma.

  5. Smith D, Yong K. Advances in understanding prognosis in myeloma. Br J Haematol. 2016;175(3):367–80.

    Article  PubMed  Google Scholar 

  6. Shah N, Callander N, Ganguly S, et al. Hematopoietic stem cell transplantation for multiple myeloma: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21(7):1155–66.

    Article  PubMed  Google Scholar 

  7. Holloway PA, Kaldenhoven N, van Dijk M, et al. Susceptibility of malignant plasma cells to HA-1(H) specific lysis suggests a role for the minor histocompatibility antigen HA-1 in the graft-versus-myeloma effect. Leukemia. 2004;18(9):1543–5.

    Article  CAS  PubMed  Google Scholar 

  8. Tyler EM, Jungbluth AA, O’Reilly RJ, Koehne G. WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. Blood. 2013;121(2):308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Bergen CA, Kester MG, Jedema I, et al. Multiple myeloma-reactive T cells recognize an activation-induced minor histocompatibility antigen encoded by the ATP-dependent interferon-responsive (ADIR) gene. Blood. 2007;109(9):4089–96.

    Article  PubMed  Google Scholar 

  10. Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood. 1996;87(3):1196–8.

    CAS  PubMed  Google Scholar 

  11. Verdonck LF, Lokhorst HM, Dekker AW, Nieuwenhuis HK, Petersen EJ. Graft-versus-myeloma effect in two cases. Lancet. 1996;347(9004):800–1.

    Article  CAS  PubMed  Google Scholar 

  12. Lokhorst HM, Schattenberg A, Cornelissen JJ, Thomas LL, Verdonck LF. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood. 1997;90(10):4206–11.

    CAS  PubMed  Google Scholar 

  13. Kroger N, Badbaran A, Lioznov M, et al. Post-transplant immunotherapy with donor-lymphocyte infusion and novel agents to upgrade partial into complete and molecular remission in allografted patients with multiple myeloma. Exp Hematol. 2009;37(7):791–8.

    Article  PubMed  Google Scholar 

  14. Beitinjaneh AM, Saliba R, Bashir Q, et al. Durable responses after donor lymphocyte infusion for patients with residual multiple myeloma following non-myeloablative allogeneic stem cell transplant. Leuk Lymphoma. 2012;53(8):1525–9.

    Article  CAS  PubMed  Google Scholar 

  15. Krishnan A, Pasquini MC, Logan B, et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. Lancet Oncol. 2011;12(13):1195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kapp M, Stevanovic S, Fick K, et al. CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transplant. 2009;43(5):399–410.

    Article  CAS  PubMed  Google Scholar 

  17. Atanackovic D, Arfsten J, Cao Y, et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood. 2007;109(3):1103–12.

    Article  CAS  PubMed  Google Scholar 

  18. Rotta M, Storer BE, Sahebi F, et al. Long-term outcome of patients with multiple myeloma after autologous hematopoietic cell transplantation and nonmyeloablative allografting. Blood. 2009;113(14):3383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lokhorst HM, Wu K, Verdonck LF, et al. The occurrence of graft-versus-host disease is the major predictive factor for response to donor lymphocyte infusions in multiple myeloma. Blood. 2004;103(11):4362–4.

    Article  CAS  PubMed  Google Scholar 

  20. Bacigalupo A, Ballen K, Rizzo D, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gahrton G, Tura S, Ljungman P, et al. Allogeneic bone marrow transplantation in multiple myeloma. European Group for Bone Marrow Transplantation. N Engl J Med. 1991;325(18):1267–73.

    Article  CAS  PubMed  Google Scholar 

  22. Bensinger WI, Buckner CD, Anasetti C, et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood. 1996;88(7):2787–93.

    CAS  PubMed  Google Scholar 

  23. Lokhorst HM, Segeren CM, Verdonck LF, et al. Partially T-cell-depleted allogeneic stem-cell transplantation for first-line treatment of multiple myeloma: a prospective evaluation of patients treated in the phase III study HOVON 24 MM. J Clin Oncol. 2003;21(9):1728–33.

    Article  PubMed  Google Scholar 

  24. Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol. 2006;24(6):929–36.

    Article  CAS  PubMed  Google Scholar 

  25. Gahrton G, Tura S, Ljungman P, et al. Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma. J Clin Oncol. 1995;13(6):1312–22.

    Article  CAS  PubMed  Google Scholar 

  26. Gahrton G, Svensson H, Cavo M, et al. Progress in allogenic bone marrow and peripheral blood stem cell transplantation for multiple myeloma: a comparison between transplants performed 1983–93 and 1994–8 at European Group for Blood and Marrow Transplantation centres. Br J Haematol. 2001;113(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  27. Crawley C, Lalancette M, Szydlo R, et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood. 2005;105(11):4532–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Zhang MJ, Li P, et al. Trends in allogeneic stem cell transplantation for multiple myeloma: a CIBMTR analysis. Blood. 2011;118(7):1979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maloney DG, Molina AJ, Sahebi F, et al. Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood. 2003;102(9):3447–54.

    Article  CAS  PubMed  Google Scholar 

  30. Kroger N, Schwerdtfeger R, Kiehl M, et al. Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood. 2002;100(3):755–60.

    Article  CAS  PubMed  Google Scholar 

  31. Bruno B, Rotta M, Patriarca F, et al. Nonmyeloablative allografting for newly diagnosed multiple myeloma: the experience of the Gruppo Italiano Trapianti di Midollo. Blood. 2009;113(14):3375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garban F, Attal M, Michallet M, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006;107(9):3474–80.

    Article  CAS  PubMed  Google Scholar 

  33. Bruno B, Rotta M, Patriarca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.

    Article  CAS  PubMed  Google Scholar 

  34. Stefan Knop PL, Holger Hebart, Ernst Holler, Monika Engelhardt. Allogeneic stem cell transplant versus tandem high-dose melphalan for front-line treatment of deletion 13q14 myeloma—an interim analysis of the German DSMM V Trial. Blood. 114: Abstract 51.

  35. Rosinol L, Perez-Simon JA, Sureda A, et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood. 2008;112(9):3591–3.

    Article  CAS  PubMed  Google Scholar 

  36. Bjorkstrand B, Iacobelli S, Hegenbart U, et al. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up. J Clin Oncol. 2011;29(22):3016–22.

    Article  PubMed  Google Scholar 

  37. Lokhorst HM, van der Holt B, Cornelissen JJ, et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood. 2012;119(26):6219–25. quiz 6399.

    Article  CAS  PubMed  Google Scholar 

  38. Lokhorst H, Einsele H, Vesole D, et al. International Myeloma Working Group consensus statement regarding the current status of allogeneic stem-cell transplantation for multiple myeloma. J Clin Oncol. 2010;28(29):4521–30.

    Article  PubMed  Google Scholar 

  39. van Rhee F, Crowley J, Barlogie B. Allografting or autografting for myeloma. N Engl J Med. 2007;356(25):2646–8. author reply 2646–2648.

    Article  PubMed  Google Scholar 

  40. Schilling G, Hansen T, Shimoni A, et al. Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma. Leukemia. 2008;22(6):1250–5.

    Article  CAS  PubMed  Google Scholar 

  41. Roos-Weil D, Moreau P, Avet-Loiseau H, et al. Impact of genetic abnormalities after allogeneic stem cell transplantation in multiple myeloma: a report of the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Haematologica. 2011;96(10):1504–11.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bashir Q, Khan H, Orlowski RZ, et al. Predictors of prolonged survival after allogeneic hematopoietic stem cell transplantation for multiple myeloma. Am J Hematol. 2012;87(3):272–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Freytes CO, Vesole DH, LeRademacher J, et al. Second transplants for multiple myeloma relapsing after a previous autotransplant-reduced-intensity allogeneic vs autologous transplantation. Bone Marrow Transplant. 2014;49(3):416–21.

    Article  CAS  PubMed  Google Scholar 

  44. Patriarca F, Einsele H, Spina F, et al. Allogeneic stem cell transplantation in multiple myeloma relapsed after autograft: a multicenter retrospective study based on donor availability. Biol Blood Marrow Transplant. 2012;18(4):617–26.

    Article  CAS  PubMed  Google Scholar 

  45. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.

    Article  CAS  PubMed  Google Scholar 

  46. Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–48.

    Article  CAS  PubMed  Google Scholar 

  47. Kawamura K, Takamatsu H, Ikeda T, et al. Cord blood transplantation for multiple myeloma: a study from the Multiple Myeloma Working Group of the Japan Society for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant. 2015;21(7):1291–8.

    Article  PubMed  Google Scholar 

  48. Paviglianiti A, Xavier E, Ruggeri A, et al. Outcomes of unrelated cord blood transplantation in patients with multiple myeloma: a survey on behalf of Eurocord, the Cord Blood Committee of Cellular Therapy and Immunobiology Working Party, and the Chronic Leukemia Working Party of the EBMT. Haematologica. 2016;101(9):1120–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nonami A, Miyamoto T, Kuroiwa M, et al. Successful treatment of primary plasma cell leukaemia by allogeneic stem cell transplantation from haploidentical sibling. Jpn J Clin Oncol. 2007;37(12):969–72.

    Article  PubMed  Google Scholar 

  50. Nilanjan Ghosh XY, Bolaños-Meade J, Fuchs EJ, Luznik L, Kanakry JA, Brodsky RA, et al. Outcomes of allogeneic blood or marrow transplantation (allobmt) in multiple myeloma with post-transplantation cyclophosphamide (PTCy). Blood. 2013;122:3407.

    Google Scholar 

  51. Gahrton G, Svensson H, Bjorkstrand B, et al. Syngeneic transplantation in multiple myeloma—a case-matched comparison with autologous and allogeneic transplantation. European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 1999;24(7):741–5.

    Article  CAS  PubMed  Google Scholar 

  52. Bashey A, Perez WS, Zhang MJ, et al. Comparison of twin and autologous transplants for multiple myeloma. Biol Blood Marrow Transplant. 2008;14(10):1118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1782–91.

    Article  CAS  PubMed  Google Scholar 

  54. McCarthy PL, Owzar K, Hofmeister CC, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905.

    Article  PubMed  Google Scholar 

  56. Sun K, Welniak LA, Panoskaltsis-Mortari A, et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A. 2004;101(21):8120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun K, Wilkins DE, Anver MR, et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood. 2005;106(9):3293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nencioni A, Schwarzenberg K, Brauer KM, et al. Proteasome inhibitor bortezomib modulates TLR4-induced dendritic cell activation. Blood. 2006;108(2):551–8.

    Article  CAS  PubMed  Google Scholar 

  59. O’Shaughnessy MJ, Vogtenhuber C, Sun K, et al. Ex vivo inhibition of NF-kappaB signaling in alloreactive T-cells prevents graft-versus-host disease. Am J Transplant. 2009;9(3):452–62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kroger N, Zabelina T, Ayuk F, et al. Bortezomib after dose-reduced allogeneic stem cell transplantation for multiple myeloma to enhance or maintain remission status. Exp Hematol. 2006;34(6):770–5.

    Article  PubMed  Google Scholar 

  61. El-Cheikh J, Michallet M, Nagler A, et al. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica. 2008;93(3):455–8.

    Article  CAS  PubMed  Google Scholar 

  62. Caballero-Velazquez T, Lopez-Corral L, Encinas C, et al. Phase II clinical trial for the evaluation of bortezomib within the reduced intensity conditioning regimen (RIC) and post-allogeneic transplantation for high-risk myeloma patients. Br J Haematol. 2013;162(4):474–82.

    Article  CAS  PubMed  Google Scholar 

  63. Nishihori T, Ochoa-Bayona JL, Kim J, et al. Allogeneic hematopoietic cell transplantation for consolidation of VGPR or CR for newly diagnosed multiple myeloma. Bone Marrow Transplant. 2013;48(9):1179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Teo SK. Properties of thalidomide and its analogues: implications for anticancer therapy. AAPS J. 2005;7(1):E14–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Minnema MC, van der Veer MS, Aarts T, Emmelot M, Mutis T, Lokhorst HM. Lenalidomide alone or in combination with dexamethasone is highly effective in patients with relapsed multiple myeloma following allogeneic stem cell transplantation and increases the frequency of CD4+Foxp3+ T cells. Leukemia. 2009;23(3):605–7.

    Article  CAS  PubMed  Google Scholar 

  66. Kneppers E, van der Holt B, Kersten MJ, et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible: results of the HOVON 76 Trial. Blood. 2011;118(9):2413–9.

    Article  CAS  PubMed  Google Scholar 

  67. Alsina M, Becker PS, Zhong X, et al. Lenalidomide maintenance for high-risk multiple myeloma after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(8):1183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wolschke C, Stubig T, Hegenbart U, et al. Postallograft lenalidomide induces strong NK cell-mediated antimyeloma activity and risk for T cell-mediated GvHD: results from a phase I/II dose-finding study. Exp Hematol. 2013;41(2):134–42. e133.

    Article  CAS  PubMed  Google Scholar 

  69. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112(10):4017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Paiva B, Puig N, Garcia-Sanz R, San Miguel JF, Grupo Espanol de Mieloma /Programa para el Estudio de la Terapeutica en Hemopatias Malignas cooperative study g. Is this the time to introduce minimal residual disease in multiple myeloma clinical practice? Clin Cancer Res. 2015;21(9):2001–8.

    Article  CAS  PubMed  Google Scholar 

  71. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–346. IMWG consensus guidelines for MRD monitoring in multiple myeloma.

  73. Corradini P, Voena C, Tarella C, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17(1):208–15.

    Article  CAS  PubMed  Google Scholar 

  74. Martinelli G, Terragna C, Zamagni E, et al. Molecular remission after allogeneic or autologous transplantation of hematopoietic stem cells for multiple myeloma. J Clin Oncol. 2000;18(11):2273–81.

    Article  CAS  PubMed  Google Scholar 

  75. Corradini P, Cavo M, Lokhorst H, et al. Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood. 2003;102(5):1927–9.

    Article  CAS  PubMed  Google Scholar 

  76. Giaccone L, Brunello L, Festuccia M, et al. Clinical impact of immunophenotypic remission after allogeneic hematopoietic cell transplantation in multiple myeloma. Bone Marrow Transplant. 2015;50(4):511–6.

    Article  CAS  PubMed  Google Scholar 

  77. Bashirova AA, Martin MP, McVicar DW, Carrington M. The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genomics Hum Genet. 2006;7:277–300.

    Article  CAS  PubMed  Google Scholar 

  78. de Smith AJ, Walsh KM, Ladner MB, et al. The role of KIR genes and their cognate HLA class I ligands in childhood acute lymphoblastic leukemia. Blood. 2014;123(16):2497–503.

    Article  PubMed  PubMed Central  Google Scholar 

  79. • Kannan GS, Aquino-Lopez A, Lee DA. Natural killer cells in malignant hematology: a primer for the non-immunologist. Blood Rev. 2016. A very nice review for understanding NK cells and killer-cell immunoglobulin-like receptors.

  80. Pende D, Marcenaro S, Falco M, et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood. 2009;113(13):3119–29.

    Article  CAS  PubMed  Google Scholar 

  81. Benson Jr DM, Hofmeister CC, Padmanabhan S, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 2012;120(22):4324–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Benson Jr DM, Cohen AD, Jagannath S, et al. A phase I trial of the anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin Cancer Res. 2015;21(18):4055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120(5):1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaiser Bashir.

Ethics declarations

Conflict of Interest

Qaiser Bashir reports grants from Takeda Pharma and Celgene Pharma and is on the advisory board of Takeda Pharma and Spectrum Pharma.

Muzaffar H. Qazilbash declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Multiple Myeloma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, Q., Qazilbash, M.H. Allogeneic Hematopoietic Cell Transplantation for Myeloma: When and in Whom Does It Work. Curr Hematol Malig Rep 12, 126–135 (2017). https://doi.org/10.1007/s11899-017-0374-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-017-0374-1

Keywords

Navigation