Skip to main content

Advertisement

Log in

Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies

  • Multiple Myeloma (R Nievszky, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Multiple myeloma is a disorder of terminally differentiated plasma cells, characterized by immune dysfunction, deregulated signaling within the bone marrow stromal compartment, and a microenvironment that fosters immunosuppression. Immunomodulatory techniques, such as allogeneic hematopoietic stem cell transplant (allo-HCT) and donor lymphocyte infusion (DLI), demonstrate long-term disease control via manipulation of the immunologic milieu. However, allo-HCT is associated with numerous toxicities including infectious complications and graft versus host effect and is not suitable for many patients. Novel agents and cellular-based therapies aim to restore the balance of humoral and adaptive immunity without the morbidity of allo-HCT and DLI. In the following review, we will summarize the use of immunomodulatory techniques in multiple myeloma, including monoclonal antibodies, vaccine therapy, checkpoint inhibitors, autologous T cells, and engineered T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Richardson PG, Mitsiades C, Hideshima T, Anderson KC. Lenalidomide in multiple myeloma. Expert Rev Anticancer Ther. 2006;6(8):1165–73.

    Article  CAS  PubMed  Google Scholar 

  2. Shah JJ, Orlowski RZ. Proteasome inhibitors in the treatment of multiple myeloma. Leukemia. 2009;23(11):1964–79.

    Article  CAS  PubMed  Google Scholar 

  3. Rutella S, Locatelli F. Targeting multiple-myeloma-induced immune dysfunction to improve immunotherapy outcomes. Clin Dev Immunol. 2012;2012:196063.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Braga WM, da Silva BR, de Carvalho AC, Maekawa YH, Bortoluzzo AB, Rizzatti EG, et al. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4(+) T regulatory cells. Cancer Immunol Immunother CII. 2014;63(11):1189–97.

    Article  CAS  PubMed  Google Scholar 

  5. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R, et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med. 2006;203(8):1859–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bianchi G, Munshi NC. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015.

  7. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. De Veirman K, Van Ginderachter JA, Lub S, De Beule N, Thielemans K, Bautmans I, et al. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget 2015.

  9. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hayashi T, Hideshima T, Akiyama M, Raje N, Richardson P, Chauhan D, et al. Ex vivo induction of multiple myeloma-specific cytotoxic T lymphocytes. Blood. 2003;102(4):1435–42.

    Article  CAS  PubMed  Google Scholar 

  11. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell. 2009;16(4):309–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 2011;34(5):409–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D, et al. Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 2015.

  14. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28(28):4390–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Jakubowiak AJ, Benson DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–5.

    Article  CAS  PubMed  Google Scholar 

  16. Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol. 2012;30(16):1953–9.

    Article  CAS  PubMed  Google Scholar 

  18. Richardson PG, Moreau P, Jakubowiak AJ, Facon T, Jagannath S, Vij R, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: interim results of a phase 2 study. ASH Annual Meeeting, 2010.

  19. van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8(9):2616–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8.

    Article  PubMed  CAS  Google Scholar 

  21. Plesner T, Lokhorst H, Gimsing P, Nahi H, Lisby S, Richardson PG. Daratumumab, a CD38 monoclonal antibody in patients with multiple myeloma—data from a dose-escalation phase I/II study. ASH Annu Meet Abstr. 2012;120(21):73.

    Google Scholar 

  22. Lokhorst HM, Plesner T, Gimsing P, Nahi H, Minnema M, Lassen UN, et al. Phase I/II dose-escalation study of daratumumab in patients with relapsed or refractory multiple myeloma. ASCO Meet Abstr. 2013;31(15_suppl):8512.

    Google Scholar 

  23. Laubach JP, Tai YT, Richardson PG, Anderson KC. Daratumumab granted breakthrough drug status. Expert Opin Investig Drugs. 2014;23(4):445–52.

    Article  CAS  PubMed  Google Scholar 

  24. Boles KS, Mathew PA. Molecular cloning of CS1, a novel human natural killer cell receptor belonging to the CD2 subset of the immunoglobulin superfamily. Immunogenetics. 2001;52(3–4):302–7.

    Article  CAS  PubMed  Google Scholar 

  25. Collins SM, Bakan CE, Swartzel GD, Hofmeister CC, Efebera YA, Kwon H, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lee HC. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem. 2012;287(38):31633–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Longhi MS, Robson SC, Bernstein SH, Serra S, Deaglio S. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med. 2013;91(2):165–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A, et al. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology. 2013;2(9):e26246.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bensinger WI, Buckner CD, Anasetti C, Clift R, Storb R, Barnett T, et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood. 1996;88(7):2787–93.

    CAS  PubMed  Google Scholar 

  30. Bensinger WI, Maloney D, Storb R. Allogeneic hematopoietic cell transplantation for multiple myeloma. Semin Hematol. 2001;38(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  31. Alyea EP, Soiffer RJ, Canning C, Neuberg D, Schlossman R, Pickett C, et al. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood. 1998;91(10):3671–80.

    CAS  PubMed  Google Scholar 

  32. Gahrton G, Tura S, Ljungman P, Belanger C, Brandt L, Cavo M, et al. Allogeneic bone marrow transplantation in multiple myeloma. European Group for Bone Marrow Transplantation. N Engl J Med. 1991;325(18):1267–73.

    Article  CAS  PubMed  Google Scholar 

  33. Gahrton G, Tura S, Ljungman P, Blade J, Brandt L, Cavo M, et al. Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol. 1995;13(6):1312–22.

    CAS  Google Scholar 

  34. Kuruvilla J, Shepherd JD, Sutherland HJ, Nevill TJ, Nitta J, Le A, et al. Long-term outcome of myeloablative allogeneic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2007;13(8):925–31.

    Article  Google Scholar 

  35. Bellucci R, Alyea EP, Weller E, Chillemi A, Hochberg E, Wu CJ, et al. Immunologic effects of prophylactic donor lymphocyte infusion after allogeneic marrow transplantation for multiple myeloma. Blood. 2002;99(12):4610–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kroger N, Kruger W, Renges H, Zabelina T, Stute N, Jung R, et al. Donor lymphocyte infusion enhances remission status in patients with persistent disease after allografting for multiple myeloma. Br J Haematol. 2001;112(2):421–3.

    Article  CAS  PubMed  Google Scholar 

  37. Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S, et al. Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood. 2005;105(11):4532–9.

    Article  CAS  PubMed  Google Scholar 

  38. Crawley C, Iacobelli S, Bjorkstrand B, Apperley JF, Niederwieser D, Gahrton G. Reduced-intensity conditioning for myeloma: lower nonrelapse mortality but higher relapse rates compared with myeloablative conditioning. Blood. 2007;109(8):3588–94.

    Article  CAS  PubMed  Google Scholar 

  39. Giaccone L, Storer B, Patriarca F, Rotta M, Sorasio R, Allione B, et al. Long-term follow-up of a comparison of nonmyeloablative allografting with autografting for newly diagnosed myeloma. Blood. 2011;117(24):6721–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bruno B, Rotta M, Patriarca F, Mordini N, Allione B, Carnevale-Schianca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.

    Article  CAS  PubMed  Google Scholar 

  41. Krishnan A, Pasquini MC, Logan B, Stadtmauer EA, Vesole DH, Alyea 3rd E, et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. The Lancet. Oncology. 2011;12(13):1195–203.

    PubMed Central  PubMed  Google Scholar 

  42. Lokhorst HM, van der Holt B, Cornelissen JJ, Kersten MJ, van Oers M, Raymakers R, et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood. 2012;119(26):6219–25. quiz 399.

    Article  CAS  PubMed  Google Scholar 

  43. Garban F, Attal M, Michallet M, Hulin C, Bourhis JH, Yakoub-Agha I, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006;107(9):3474–80.

    Article  CAS  PubMed  Google Scholar 

  44. Rosinol L, Perez-Simon JA, Sureda A, de la Rubia J, de Arriba F, Lahuerta JJ, et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood. 2008;112(9):3591–3.

    Article  CAS  PubMed  Google Scholar 

  45. Lynch RG, Graff RJ, Sirisinha S, Simms ES, Eisen HN. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci U S A. 1972;69(6):1540–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Qian J, Wang S, Yang J, Xie J, Lin P, Freeman 3rd ME, et al. Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myeloma-specific CTLs using dendritic cells pulsed with tumor-derived gp96. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(24 Pt 1):8808–15.

    Article  CAS  Google Scholar 

  47. Takahashi T, Makiguchi Y, Hinoda Y, Kakiuchi H, Nakagawa N, Imai K, et al. Expression of MUC1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient. J Immunol. 1994;153(5):2102–9.

    CAS  PubMed  Google Scholar 

  48. Roehnisch T, Then C, Nagel W, Blumenthal C, Braciak T, Donzeau M, et al. Phage idiotype vaccination: first phase I/II clinical trial in patients with multiple myeloma. J Transl Med. 2014;12:119.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK. Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood. 1995;86(8):3043–9.

    CAS  PubMed  Google Scholar 

  50. Fichtner S, Hose D, Engelhardt M, Meissner T, Neuber B, Krasniqi F, et al. Association of antigen-specific T-cell responses with antigen expression and immunoparalysis in multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(7):1712–21.

    Article  CAS  Google Scholar 

  51. Tyler EM, Jungbluth AA, Gnjatic S, O’Reilly RJ, Koehne G. Cancer-testis antigen 7 expression and immune responses following allogeneic stem cell transplantation for multiple myeloma. Cancer Immunol Res. 2014;2(6):547–58.

    Article  CAS  PubMed  Google Scholar 

  52. Curioni-Fontecedro A, Knights AJ, Tinguely M, Nuber N, Schneider C, Thomson CW, et al. MAGE-C1/CT7 is the dominant cancer-testis antigen targeted by humoral immune responses in patients with multiple myeloma. Leukemia. 2008;22(8):1646–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lendvai N, Gnjatic S, Ritter E, Mangone M, Austin W, Reyner K, et al. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients. Cancer Immun 2010;10.

  54. Goodyear O, Piper K, Khan N, Starczynski J, Mahendra P, Pratt G, et al. CD8+ T cells specific for cancer germline gene antigens are found in many patients with multiple myeloma, and their frequency correlates with disease burden. Blood. 2005;106(13):4217–24.

    Article  CAS  PubMed  Google Scholar 

  55. Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 2014.

  56. Kuball J, de Boer K, Wagner E, Wattad M, Antunes E, Weeratna RD, et al. Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol Immunother. 2011;60(2):161–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L, et al. Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood. 2011;117(3):788–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. MAGE-A3 Recombinant Protein (recMAGE-A3) Immunotherapy and autologous peripheral blood lymphocyte (PBL) infusion is safe and induces robust humoral immune responses in multiple myeloma (MM) patients undergoing autologous stem cell transplantation (autoSCT). American Society of Hematology Annual Meeting; 2013; New Orleans, LA.

  59. Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K, et al. Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood. 2007;109(3):1103–12.

    Article  CAS  PubMed  Google Scholar 

  60. Lee JJ, Choi BH, Kang HK, Park MS, Park JS, Kim SK, et al. Induction of multiple myeloma-specific cytotoxic T lymphocyte stimulation by dendritic cell pulsing with purified and optimized myeloma cell lysates. Leuk Lymphoma. 2007;48(10):2022–31.

    Article  CAS  PubMed  Google Scholar 

  61. Wen YJ, Min R, Tricot G, Barlogie B, Yi Q. Tumor lysate-specific cytotoxic T lymphocytes in multiple myeloma: promising effector cells for immunotherapy. Blood. 2002;99(9):3280–5.

    Article  CAS  PubMed  Google Scholar 

  62. Spisek R, Chevallier P, Morineau N, Milpied N, Avet-Loiseau H, Harousseau JL, et al. Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res. 2002;62(10):2861–8.

    CAS  PubMed  Google Scholar 

  63. Hart DN, Hill GR. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma. Immunol Cell Biol. 1999;77(5):451–9.

    Article  CAS  PubMed  Google Scholar 

  64. Osterborg A, Yi Q, Henriksson L, Fagerberg J, Bergenbrant S, Jeddi-Tehrani M, et al. Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood. 1998;91(7):2459–66.

    CAS  PubMed  Google Scholar 

  65. Lacy MQ, Mandrekar S, Dispenzieri A, Hayman S, Kumar S, Buadi F, et al. Idiotype-pulsed antigen-presenting cells following autologous transplantation for multiple myeloma may be associated with prolonged survival. Am J Hematol. 2009;84(12):799–802.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Hansson L, Abdalla AO, Moshfegh A, Choudhury A, Rabbani H, Nilsson B, et al. Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2007;13(5):1503–10.

    Article  CAS  Google Scholar 

  67. Bae J, Song W, Smith R, Daley J, Tai YT, Anderson KC, et al. A novel immunogenic CS1-specific peptide inducing antigen-specific cytotoxic T lymphocytes targeting multiple myeloma. Br J Haematol. 2012;157(6):687–701.

    Article  CAS  PubMed  Google Scholar 

  68. Bae J, Prabhala R, Voskertchian A, Brown A, Maguire C, Richardson P, et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia. 2015;29(1):218–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tyler EM, Jungbluth AA, O’Reilly RJ, Koehne G. WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. Blood. 2013;121(2):308–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev. 2002;188:22–32.

    Article  CAS  PubMed  Google Scholar 

  71. van Baren N, Brasseur F, Godelaine D, Hames G, Ferrant A, Lehmann F, et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood. 1999;94(4):1156–64.

    PubMed  Google Scholar 

  72. Ratta M, Fagnoni F, Curti A, Vescovini R, Sansoni P, Oliviero B, et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood. 2002;100(1):230–7.

    Article  CAS  PubMed  Google Scholar 

  73. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(5):1355–65. In this phase II trial, patients with high risk/relapsed myeloma were given a toll-like receptor 3 agonist along with the cancer-testis antigen multipeptide vaccine, MAGE-A3, both before and after autologous transplant. Their T cells were expanded ex-vivo and reinfused following transplant. About three-fourths of patients mounted vaccine-specific responses.

    Article  CAS  Google Scholar 

  74. Cohen AD, et al. Recombinant (rec) MAGE-A3 protein immunotherapy and peripheral blood lymphocyte (PBL) reconstitution induce strong antigen-specific humoral and cellular immune responses in patients undergoing autologous stem cell transplantation (ASCT) for consolidation of multiple myeloma (MM). ASH Annual Meeting. San Francisco, CA. 2014.

  75. Avigan D. Dendritic cells: development, function and potential use for cancer immunotherapy. Blood Rev. 1999;13(1):51–64.

    Article  CAS  PubMed  Google Scholar 

  76. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4(12):941–52.

    Article  CAS  PubMed  Google Scholar 

  77. Henry JY, Labarthe MC, Meyer B, Dasgupta P, Dalgleish AG, Galustian C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs(R) immunomodulatory compounds lenalidomide and pomalidomide. Immunology. 2013;139(3):377–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Rosenblatt J, Vasir B, Uhl L, Blotta S, Macnamara C, Somaiya P, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(13):3640–8. This phase II study demonstrated that vaccination with dendritic cell/myeloma fusions results in expansion of myeloma-specific cytotoxic T cells and was associated with the conversion from partial to complete response in a subset of patients in the post-autologous transplant setting. It is the basis for a phase II randomized multi-center trial now underway.

    Article  CAS  Google Scholar 

  80. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3(7):611–8.

    Article  CAS  PubMed  Google Scholar 

  81. Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ, Robert C, et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci. 2013;1291:1–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. O’Mahony D, Morris JC, Quinn C, Gao W, Wilson WH, Gause B, et al. A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin Cancer Res. 2007;13(3):958–64.

    Article  PubMed  Google Scholar 

  84. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Robert C, Thomas L, Bondarenko I, O’Day S, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    Article  CAS  PubMed  Google Scholar 

  86. Kitano S, Tsuji T, Liu C, Hirschhorn-Cymerman D, Kyi C, Mu Z, et al. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol Res. 2013;1(4):235–44.

    Article  CAS  PubMed  Google Scholar 

  87. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Weber JS, Hamid O, Chasalow SD, Wu DY, Parker SM, Galbraith S, et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma. J Immunother. 2012;35(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  89. Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH, et al. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007;12(7):873–83.

    Article  CAS  PubMed  Google Scholar 

  90. Naidoo J, Page DB, Wolchok JD. Immune checkpoint blockade. Hematol Oncol Clin North Am. 2014;28(3):585–600.

    Article  PubMed  Google Scholar 

  91. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Sznol M, Kluger HM, Hodi FS, McDermott DF, Carvajal RD, Lawrence DP, et al. Survival and long-term follow-up of safety and response in patients (pts) with advanced melanoma (MEL) in a phase I trial of nivolumab (anti-PD-1; BMS-936558; ONO-4538). ASCO Meet Abstr. 2013;31(15_suppl):CRA9006.

    Google Scholar 

  96. Topalian SL, Sznol M, Brahmer JR, McDermott DF, Smith DC, Gettinger SN, et al. Nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients with advanced solid tumors: survival and long-term safety in a phase I trial. ASCO Meet Abstr. 2013;31(15_suppl):3002.

    Google Scholar 

  97. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.

    Article  CAS  PubMed  Google Scholar 

  98. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  Google Scholar 

  100. Benson Jr DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116(13):2286–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304.

    Article  CAS  PubMed  Google Scholar 

  102. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Holmberg L, Kikuchi K, Gooley TA, Adams KM, Hockenbery DM, Flowers ME, et al. Gastrointestinal graft-versus-host disease in recipients of autologous hematopoietic stem cells: incidence, risk factors, and outcome. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2006;12(2):226–34.

    Article  Google Scholar 

  104. Rapoport AP, Stadtmauer EA, Aqui N, Badros A, Cotte J, Chrisley L, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11(11):1230–7.

    Article  CAS  PubMed  Google Scholar 

  105. Garfall AL, Fraietta JA, Maus MV. Immunotherapy with chimeric antigen receptors for multiple myeloma. Discov Med. 2014;17(91):37–46.

    PubMed  Google Scholar 

  106. Noonan K, Matsui W, Serafini P, Carbley R, Tan G, Khalili J, et al. Activated marrow-infiltrating lymphocytes effectively target plasma cells and their clonogenic precursors. Cancer Res. 2005;65(5):2026–34.

  107. Weiss A, Irving BA, Tan LK, Koretzky GA. Signal transduction by the T cell antigen receptor. Semin Immunol. 1991;3(5):313–24.

    CAS  PubMed  Google Scholar 

  108. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20(2):119–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. This is one of the first reports of chimeric antigen receptor-modified T cells in advanced hematologic malignancies resulting in complete remission.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Vera J, Savoldo B, Vigouroux S, Biagi E, Pule M, Rossig C, et al. T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108(12):3890–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rebecca Karp and David Avigan each declare no potential conflicts of interest.

Hearn Jay Cho reports grants from Ludwig Institute for Cancer Research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hearn Jay Cho.

Additional information

This article is part of the Topical Collection on Multiple Myeloma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp Leaf, R., Cho, H.J. & Avigan, D. Immunotherapy for Multiple Myeloma, Past, Present, and Future: Monoclonal Antibodies, Vaccines, and Cellular Therapies. Curr Hematol Malig Rep 10, 395–404 (2015). https://doi.org/10.1007/s11899-015-0283-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0283-0

Keywords

Navigation