Skip to main content

Advertisement

Log in

Is Minimal Residual Disease Monitoring Clinically Relevant in Adults with Acute Myelogenous Leukemia?

  • Acute Leukemias (E Feldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

In the past year, there has been increasing attention towards understanding the clinical relevance of minimal residual disease (MRD) assessment. The monitoring of MRD levels at various stages of therapy has considerable potential to impact the guidance of treatment for AML patients and improve outcomes. Thus, efforts have increased to address important concerns regarding MRD measurements. These concerns include: (1) what should be monitored; (2) what methodologies should be used; (3) whether such methodologies are standardized across laboratories; (4) how prognostic levels are defined; (5) when MRD should be monitored; and (6) what treatment options are available for MRD positive patients. In this review, we will discuss the methodologies available for MRD and the studies available to date aiming to address the concerns around the use of MRD measurements for AML patients

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Al-Mawali A, Gillis D, Lewis I. The role of multiparameter flow cytometry for detection of minimal residual disease in acute myeloid leukemia. Am J Clin Pathol. 2009;131:16–26.

    Article  PubMed  Google Scholar 

  2. Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT, et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol. 2006;135:165–73.

    Article  PubMed  Google Scholar 

  3. Bacher U, Badbaran A, Fehse B, Zabelina T, Zander AR, Kroger N. Quantitative monitoring of NPM1 mutations provides a valid minimal residual disease parameter following allogeneic stem cell transplantation. Exp Hematol. 2009;37:135–42.

    Article  PubMed  CAS  Google Scholar 

  4. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA. 2010;107:7473–8.

    Article  PubMed  CAS  Google Scholar 

  5. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  PubMed  CAS  Google Scholar 

  6. Buccisano F, Maurillo L, Gattei V, Del Poeta G, Del Principe MI, Cox MC, et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia. 2006;20:1783–9.

    Article  PubMed  CAS  Google Scholar 

  7. Buccisano F, Maurillo L, Spagnoli A, Del Principe MI, Ceresoli E, Lo Coco F, et al. Monitoring of minimal residual disease in acute myeloid leukemia. Curr Opin Oncol. 2009;21:582–8.

    Article  PubMed  Google Scholar 

  8. Burmeister T, Marschalek R, Schneider B, Meyer C, Gokbuget N, Schwartz S, et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia. 2006;20:451–7.

    Article  PubMed  CAS  Google Scholar 

  9. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–36.

    Article  PubMed  CAS  Google Scholar 

  10. Campana D, Coustan-Smith E, Janossy G. The immunologic detection of minimal residual disease in acute leukemia. Blood. 1990;76:163–71.

    PubMed  CAS  Google Scholar 

  11. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21:4642–9.

    Article  PubMed  Google Scholar 

  12. Corbacioglu, A., C. Scholl, R. F. Schlenk, K. Eiwen, J. Du, L. Bullinger, S. Frohling, P. Reimer, M. Rummel, H. G. Derigs, D. Nachbaur, J. Krauter, A. Ganser, H. Dohner & K. Dohner, Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol 28: 3724-3729

  13. Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368:1894–907.

    Article  PubMed  Google Scholar 

  14. • Gerber JM, Smith BD, Ngwang B, Zhang H, Vala MS, Morsberger L, et al. A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Blood. 2012;119:3571–7. This study specifically focuses on the incorporation of antigen panels that target leukemia stem cell populations in the measurement of MCF-MRD. They highlight the poor prognostic significance of detectable residual LSCs in post-remission bone marrow aspirates from patients with AML.

    Article  PubMed  CAS  Google Scholar 

  15. Gianfaldoni G, Mannelli F, Baccini M, Antonioli E, Leoni F, Bosi A. Clearance of leukaemic blasts from peripheral blood during standard induction treatment predicts the bone marrow response in acute myeloid leukaemia: a pilot study. Br J Haematol. 2006;134:54–7.

    Article  PubMed  Google Scholar 

  16. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 1998;92:2322–33.

    PubMed  CAS  Google Scholar 

  17. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA. 2007;104:11008–13.

    Article  PubMed  CAS  Google Scholar 

  18. Howlader N, N. A., Krapcho M, Neyman N, Aminou R, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations), National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2009_pops09/, based on November 2011 SEER data submission, posted to the SEER web site, 2012.

  19. Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30:3625–32.

    Article  PubMed  Google Scholar 

  20. Jan, M., T. M. Snyder, M. R. Corces-Zimmerman, P. Vyas, I. L. Weissman, S. R. Quake & R. Majeti, Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4: 149ra118.

  21. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.

    Article  PubMed  CAS  Google Scholar 

  22. Kalina, T., J. Flores-Montero, V. H. van der Velden, M. Martin-Ayuso, S. Bottcher, M. Ritgen, J. Almeida, L. Lhermitte, V. Asnafi, A. Mendonca, R. de Tute, M. Cullen, L. Sedek, M. B. Vidriales, J. J. Perez, J. G. te Marvelde, E. Mejstrikova, O. Hrusak, T. Szczepanski, J. J. van Dongen & A. Orfao, EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26: 1986-2010.

  23. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104:3078–85.

    Article  PubMed  CAS  Google Scholar 

  24. Leung W, Pui CH, Coustan-Smith E, Yang J, Pei D, Gan K, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120:468–72.

    Article  PubMed  CAS  Google Scholar 

  25. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs Jr KD, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.

    Article  PubMed  CAS  Google Scholar 

  26. Marchesi F, Annibali O, Cerchiara E, Tirindelli MC, Avvisati G. Cytogenetic abnormalities in adult non-promyelocytic acute myeloid leukemia: a concise review. Crit Rev Oncol Hematol. 2011;80:331–46.

    Article  PubMed  Google Scholar 

  27. Mrozek, K., G. Marcucci, D. Nicolet, K. S. Maharry, H. Becker, S. P. Whitman, K. H. Metzeler, S. Schwind, Y. Z. Wu, J. Kohlschmidt, M. J. Pettenati, N. A. Heerema, A. W. Block, S. R. Patil, M. R. Baer, J. E. Kolitz, J. O. Moore, A. J. Carroll, R. M. Stone, R. A. Larson & C. D. Bloomfield, (2012) Prognostic Significance of the European LeukemiaNet Standardized System for Reporting Cytogenetic and Molecular Alterations in Adults With Acute Myeloid Leukemia. J Clin Oncol.

  28. Natelson EA. Benzene-induced acute myeloid leukemia: a clinician's perspective. Am J Hematol. 2007;82:826–30.

    Article  PubMed  Google Scholar 

  29. Oelschlagel U, Nowak R, Schaub A, Koppel C, Herbst R, Mohr B, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry. 2000;42:247–53.

    Article  PubMed  CAS  Google Scholar 

  30. Patel, J. P., M. Gonen, M. E. Figueroa, H. Fernandez, Z. Sun, J. Racevskis, P. Van Vlierberghe, I. Dolgalev, S. Thomas, O. Aminova, K. Huberman, J. Cheng, A. Viale, N. D. Socci, A. Heguy, A. Cherry, G. Vance, R. R. Higgins, R. P. Ketterling, R. E. Gallagher, M. Litzow, M. R. van den Brink, H. M. Lazarus, J. M. Rowe, S. Luger, A. Ferrando, E. Paietta, M. S. Tallman, A. Melnick, O. Abdel-Wahab & R. L. Levine, Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366: 1079-1089.

  31. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26:381–9.

    Article  PubMed  CAS  Google Scholar 

  32. Prebet T, Boissel N, Reutenauer S, Thomas X, Delaunay J, Cahn JY, et al. Acute myeloid leukemia with translocation (8;21) or inversion (16) in elderly patients treated with conventional chemotherapy: a collaborative study of the French CBF-AML intergroup. J Clin Oncol. 2009;27:4747–53.

    Article  PubMed  Google Scholar 

  33. Ratain MJ, Rowley JD. Therapy-related acute myeloid leukemia secondary to inhibitors of topoisomerase II: from the bedside to the target genes. Ann Oncol. 1992;3:107–11.

    Article  PubMed  CAS  Google Scholar 

  34. Reading CL, Estey EH, Huh YO, Claxton DF, Sanchez G, Terstappen LW, et al. Expression of unusual immunophenotype combinations in acute myelogenous leukemia. Blood. 1993;81:3083–90.

    PubMed  CAS  Google Scholar 

  35. Roboz GJ. Current treatment of acute myeloid leukemia. Curr Opin Oncol. 2012;24:711–9.

    Article  PubMed  CAS  Google Scholar 

  36. Roboz GJ, Guzman M. Acute myeloid leukemia stem cells: seek and destroy. Expert Rev Hematol. 2009;2:663–72.

    Article  PubMed  Google Scholar 

  37. Rowe JM. Evaluation of prognostic factors in AML. Preface. Best Pract Res Clin Haematol. 2011;24:485–8.

    Article  PubMed  Google Scholar 

  38. •• Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11:543–52. In the AML02 trial, LIAP is determined at diagnosis, and MCF-MRD measurements are made at defined intervals after each subsequent induction cycle. Timing of subsequent cycles as well as direction to consolidation chemotherapy versus SCT are based in part on MRD-positivity after first induction.

    Article  PubMed  CAS  Google Scholar 

  39. San Miguel JF, Vidriales MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizo C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98:1746–51.

    Article  PubMed  CAS  Google Scholar 

  40. Sievers EL, Lange BJ, Alonzo TA, Gerbing RB, Bernstein ID, Smith FO, et al. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 patients with acute myeloid leukemia. Blood. 2003;101:3398–406.

    Article  PubMed  CAS  Google Scholar 

  41. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52.

    Article  PubMed  CAS  Google Scholar 

  42. Thol F, Kolking B, Damm F, Reinhardt K, Klusmann JH, Reinhardt D, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer. 2012;51:689–95.

    Article  PubMed  CAS  Google Scholar 

  43. Thomas Köhnke, D. S., Katharina Ringel, Jan Braess, Wolfgang Hiddemann, Karsten Spiekermann, and Marion Subklewe, (2011) A Combined Score of Minimal Residual Disease (MRD) Assessment by Flow Cytometry, Cytogenetic and Molecular Markers As Well As Age Predicts Outcome and Can Potentially Guide MRD-Based Therapy in Acute Myeloid Leukemia. 53rd ASH Annual Meeting and Exposition.

  44. van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res. 2005;11:6520–7.

    Article  PubMed  Google Scholar 

  45. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007;21:1700–7.

    Article  PubMed  Google Scholar 

  46. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110:2659–66.

    Article  PubMed  Google Scholar 

  47. Venditti A, Buccisano F, Del Poeta G, Maurillo L, Tamburini A, Cox C, et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood. 2000;96:3948–52.

    PubMed  CAS  Google Scholar 

  48. Yin, J. A., M. A. O'Brien, R. K. Hills, S. B. Daly, K. Wheatley & A. K. Burnett, Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 120: 2826-2835.

Download references

Conflict of interest

Karen-Sue B. Carlson declares that she has no conflict of interest.

Monica L. Guzman has received research grants from LLS, NIH, NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica L. Guzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, KS.B., Guzman, M.L. Is Minimal Residual Disease Monitoring Clinically Relevant in Adults with Acute Myelogenous Leukemia?. Curr Hematol Malig Rep 8, 109–115 (2013). https://doi.org/10.1007/s11899-013-0157-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0157-2

Keywords

Navigation