Skip to main content

Advertisement

Log in

Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

  • Acute Leukemias (E Feldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by expression of oncogenic fusion product BCR-ABL1, resulting from reciprocal translocation between chromosomes 9 and 22 [t(9;22)(q34;q11.2)]. Previously perceived to confer poor outcome with at least 10 % lower chance of remission than standard-risk ALL. With the advent of targeted BCR-ABL specific tyrosine-kinase inhibitors (TKIs), higher remission rates were achieved, thus allowing more patients to proceed with the definitive treatment modality—allogeneic hematopoietic stem cell transplantation (alloHSCT). Prime challenges to treatment of Ph+ ALL include appropriate integration of TKIs into remission induction chemotherapeutic regimes, appropriate understanding and implementation of BCR-ABL monitoring for guiding therapeutic intervention(s), and minimizing transplant-related toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moorman A, Harrison C, Buck G, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 Trial. Blood. 2007;109:3189–97.

    Article  PubMed  CAS  Google Scholar 

  2. • Moorman A, Chilton L, Wilkinson J, et al. A population based cytogenetic study of adults with acute lymphoblastic leukemia. Blood. 2010;115:206–14. This study presents a descriptive account on the demographic, clinical and cytogenetic features of ALL in adults and highlights the rising incidence of the Ph+ cytogenetic anomaly in this age group, which carries one of the worst prognoses.

    Article  PubMed  CAS  Google Scholar 

  3. Burmeister T, Schwartz S, Bartram C, et al. Patients' age and BCR-ABL frequency in adult B-precursor ALL: a retrospective analysis from the GMALL study group. Blood. 2008;112:918–9.

    Article  PubMed  CAS  Google Scholar 

  4. Dombert H, Gabert J, Boiron J, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia—results of the prospective multicenter LALA-94 trial. Blood. 2002;100:2357–66.

    Article  CAS  Google Scholar 

  5. Gleissner B, Gökbuget N, Bartram C, et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood. 2002;99:1536–43.

    Article  PubMed  CAS  Google Scholar 

  6. Faderl S, Kantarjian H, Thomas D, et al. Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk Lymphoma. 2000;36:263–7.

    Article  PubMed  CAS  Google Scholar 

  7. Preti H, O’Brien S, Giralt S, et al. Philadelphia chromosome-positive adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis in 41 patients. Am J Med. 1994;97:60–5.

    Article  PubMed  CAS  Google Scholar 

  8. Secker-Walker L, Craig J, Hawkins J, et al. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia. 1991;5:196–9.

    PubMed  CAS  Google Scholar 

  9. Soverini S, Colarossi S, Gnani A, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12:7374–9.

    Article  PubMed  CAS  Google Scholar 

  10. Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99:3472–5.

    Article  PubMed  CAS  Google Scholar 

  11. Pfeifer H, Wassmann B, Pavlova A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110:727–34.

    Article  PubMed  CAS  Google Scholar 

  12. Mullighan C, Miller C, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    Article  PubMed  CAS  Google Scholar 

  13. • Matinelli G, Iacobucci I, Storlazzi C, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27:5202–7. This paper highlighted the negative prognostic impact of IKAROS and provided a molecular insight into the aggressive nature of Ph+ ALL.

    Article  CAS  Google Scholar 

  14. Mullighan C, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–80.

    Article  PubMed  CAS  Google Scholar 

  15. Iacobucci I, Lonetti A, Messa F, et al. Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood. 2008;112:3847–55.

    Article  PubMed  CAS  Google Scholar 

  16. Pfeifer H, Spinelli O, Cayuela J, et al. International standardization of minimal residual disease assessment for Philadelphia chromosome positive acute lymphoblastic leukemia expressing minor-BCR-ABL: updated results of EuroMRD. [Abstract]. Haemtologica. 2012;97(s1):Abstract 0614.

    Google Scholar 

  17. Pfeifer H, Cazzaniga G, Spinelli O, et al. International Standardization of Minimal Residual Disease Assessment for in Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia (Ph+ ALL) Expressing m-BCR-ABL Transcripts: updated Results of Quality Control Procedures by the EWALL and ESG-MRD-ALL Consortia. [Abstract]. Blood. 2011;118:2535.

    Google Scholar 

  18. Soverini S, Vitale A, Poerio A, et al. Philadelphia positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96:552–7.

    Article  PubMed  CAS  Google Scholar 

  19. Rowe J, Buck G, Burnett A, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG2993. Blood. 2005;106:3760–7.

    Article  PubMed  CAS  Google Scholar 

  20. Thomas D, Faderl S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103:4396–407.

    Article  PubMed  CAS  Google Scholar 

  21. Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24:460–6.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas D, O’Brien S, Faderl S, et al. Long-term outcome after hyper-CVAD and imatinib (IM) for de novo or minimally treated Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL) [abstract]. J Clin Oncol 2010; 28:Abstract 6506.

  23. Wassman B, Pfeifer H, Goekbuget N, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2006;108:1469–77.

    Article  CAS  Google Scholar 

  24. De Labarthe, Rousselot P, Huguet-Rigal F, et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood. 2007;109:1408–13.

    Article  PubMed  CAS  Google Scholar 

  25. Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell'Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109:3676–8.

    Article  PubMed  CAS  Google Scholar 

  26. Ribera JM, Oriol A, Gonzalez M, et al. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial. Haematologica. 2010;95:87–95.

    Article  PubMed  CAS  Google Scholar 

  27. Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of the phase 2 study. Blood. 2007;110:2309–15.

    Article  PubMed  CAS  Google Scholar 

  28. Ravandi F, O'Brien S, Thomas D, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.

    Article  PubMed  CAS  Google Scholar 

  29. Foà R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8.

    Article  PubMed  CAS  Google Scholar 

  30. Fielding AK, Buck G, Lazarus H, et al. Imatinib significantly enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukaemia; final results of the UKALLXII/ECOG2993 Trial [Abstract]. Blood. 2010;116:493.

    Article  CAS  Google Scholar 

  31. Chalandon Y, Thomas X, Hayette S, et al. First results of the GRAAPH-2005 study in younger adult patients with de novo Philadelphia positive acute lymphoblastic leukemia [Abstract]. Blood. 2008;112:12.

    Google Scholar 

  32. Chalandon Y, Thomas X, Hayette S, et al. Is less chemotherapy detrimental in adults with Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) treated with high-dose imatinib? Results of the prospective randomized Graaph-2005 study [Abstract]. ASH abstract 2012; Abstract no. 138

  33. Ottmann O, Wassmann B, Pfeifer H, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Cancer. 2007;109:2068–76.

    Article  PubMed  CAS  Google Scholar 

  34. Wassmann B, Gökbuget N, Scheuring U, et al. A randomized multicenter open label phase II study to determine the safety and efficacy of induction therapy with imatinib (Glivec, formerly STI571) in comparison with standard induction chemotherapy in elderly (>55 years) patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL) (CSTI571ADE 10). Ann Hematol. 2003;82:716–20.

    Article  PubMed  CAS  Google Scholar 

  35. Delannoy A, Delabesse E, Lheritier V, et al. Imatinib and methylprednisolone alternated with chemotherapy improve the outcome of elderly patients with Philadelphia-positive acute lymphoblastic leukemia: results of the GRAALL AFR09 study. Leukemia. 2006;20:1526–32.

    Article  PubMed  CAS  Google Scholar 

  36. Gruber F, Mustjoki S, Porkka K. Impact of tyrosine kinase inhibitors on patient outcomes in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol. 2009;145:581–97.

    Article  PubMed  CAS  Google Scholar 

  37. Bassan R, Rossi G, Pogliani E, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28:3644–52.

    Article  PubMed  CAS  Google Scholar 

  38. O’Hare T, Walters D, Stoffregen E, et al. In vitro activity of Bcr-Abl inhibitos AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65:4500–5.

    Article  PubMed  Google Scholar 

  39. Shah N, Tran C, Lee F, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.

    Article  PubMed  CAS  Google Scholar 

  40. Talpaz M, Shah N, Kartarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.

    Article  PubMed  CAS  Google Scholar 

  41. Lilly M, Ottmann O, Shah N, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: results from a phase 3 study. Am J Hematol. 2010;85:164–70.

    PubMed  CAS  Google Scholar 

  42. Rousselot P, Hayette S, Récher C, et al. Dasatinib (Sprycel®) and low intensity chemotherapy for first-line treatment in elderly patients with de novo Philadelphia positive ALL (EWALL-PH-01): kinetics of response, resistance and prognostic significance [Abstract]. Blood. 2010;116:1204.

    Google Scholar 

  43. Porkka K, Koskenvesa P, Lundan T, et al. Dasatinib crosses the blood–brain-barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112:1005–12.

    Article  PubMed  CAS  Google Scholar 

  44. Takayama N, Sato N, O’Brien S, et al. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukemia due to poor penetration into cerebrospinal fluid. Br J Haematol. 2002;119:106–8.

    Article  PubMed  Google Scholar 

  45. Soverini S, Colarossi S, Gnani A, et al. Resistance to dasatinib in Philadelphia-positive leukemia and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica. 2007;92:401–4.

    Article  PubMed  CAS  Google Scholar 

  46. Soverini S, Martinelli G, Colarossi S, et al. Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to dasatinib in Philadelphia chromosome-positive leukemia. J Clin Oncol. 2006;24:e51–2.

    Article  PubMed  Google Scholar 

  47. Kim D-Y, Joo Y, Lee J-H, et al. Nilotinib combined with multi-agent chemotherapy for adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia: Interim results of Korean Adult ALL Working Party phase 2 study. [Abstract]. ASH 2012; Abstract no. 614.

  48. Kantarjian H, Kim D-W, Pinilla-Ibarz J, et al. Efficacy and safety of ponatinib in patients with accelerated phase or blast phase chronic myelois leukemia (AP-CML or BP-CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL): 12-month follow-up of the PACE trial. [Abstract]. ASH 2012; Abstract no. 915.

  49. Cortes J, Kim D-W, Pinilla-Ibarz J, et al. Initial findings from the PACE trial: a pivotal phase 2 study of ponatinib in patients with CML and Ph+ ALL resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation. [Abstract]. Blood. 2011;118:109.

    Article  CAS  Google Scholar 

  50. Khoury H, Cortes J, Gambacorti-Passerini C, et al. Activity of bosutinib by baseline and emergent mutation status in Philadelphia chromosome-positive leukemia patients with resistance or intolerance to other tyrosine kinase inhibitors. [Abstract]. Blood. 2011;118:110.

    Google Scholar 

  51. Yanada M, Sugiura I, Takeuchi J, et al. Prospective monitoring of BCR-ABL1transcript levels in patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia undergoing imatinib-combined chemotherapy. Br J Haematol. 2008;143:503–10.

    PubMed  Google Scholar 

  52. Forman S, O’Donnell M, Nademanee A, et al. Bone marrow transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1987;70:587–8.

    PubMed  CAS  Google Scholar 

  53. Barrett A, Horowitz M, Ash R, et al. Bone marrow transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1992;79:3067–70.

    PubMed  CAS  Google Scholar 

  54. Sierra J, Radich J, Hansen J, et al. Marrow transplants from unrelated donors for treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1997;90:1410–4.

    PubMed  CAS  Google Scholar 

  55. Snyder D, Nademanee A, O’Donnell M, et al. Long-term follow-up of 23 patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with allogeneic bone marrow transplant in first complete remission. Leukemia. 1999;13:2053–8.

    Article  PubMed  CAS  Google Scholar 

  56. Dombret H, Gabert J, Boiron J, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 trial. Blood. 2002;100:2357–66.

    Article  PubMed  CAS  Google Scholar 

  57. Esperou H, Boiron J, Cayuela J, et al. A potential graft-versus-leukemia effect after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: results from the French Bone Marrow Transplantation Society. Bone Marrow Transplant. 2003;31:909–18.

    Article  PubMed  CAS  Google Scholar 

  58. Yanada M, Naoe T, Iida H, et al. Myeloablative allogeneic hematopoietic stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: significant roles of total body irradiation and chronic graft-versus host disease. Bone Marrow Transplant. 2005;36:867–72.

    Article  PubMed  CAS  Google Scholar 

  59. Laport G, Alvarnas J, Palmer J, et al. Long-term remission of Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic hematopoietic cell transplantation from matched sibling donors: a 20-year experience with the fractionated total body irradiation-etoposide regimen. Blood. 2008;112:903–9.

    Article  PubMed  CAS  Google Scholar 

  60. •• Fielding A, Rowe J, Richards S, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the international ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009;113:4489–96. This study included the largest prospective data on Ph+ ALL and was the first to demonstrate that alloHSCT is an indispensible treatment modality in Ph+ ALL, as it confers significantly superior relapse-free survival.

    Article  PubMed  CAS  Google Scholar 

  61. Carpenter P, Snyder D, Flowers M, et al. Prophylactic administration of imatinib after hematopoietic cell transplantation for high-risk Philadelphia chromosome-positive leukemia. Blood. 2007;109:2791–3.

    PubMed  CAS  Google Scholar 

  62. Kebriaei P, Saliba R, Rondon G, et al. Long-term follow of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcome. Biol Blood Marrow Transplant. 2012;18:584–92.

    Article  PubMed  CAS  Google Scholar 

  63. Nicolini F, Basak G, Soverini S, et al. Allogeneic stem cell transplantation for patients harboring T315I BCR-ABL mutated leukemias. Blood. 2011;118:5697–700.

    Article  PubMed  CAS  Google Scholar 

  64. Eefting M, Halkes C, Kersting S, et al. Excellent outcome after T cell depleted allogeneic stem cell transplantation with pre-emptive donor lymphocyte infusion for Philadelphia-positive acute lymphoblastic leukemia in first remission. [Abstract]. Haematologica. 2012;97(s1):Abstract 1172.

    Google Scholar 

  65. Pfeifer H, Goekbuget N, Völp C, et al. Long-term outcome of 335 adult patients receiving different schedules of imatinib and chemotherapy as front-line treatment for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). [Abstract]. Blood. 2010;116:173.

    Google Scholar 

  66. Mizuta S, Matsuo K, Yagasaki F, et al. Pre-transplant imatinib-based therapy improves the outcome of allogeneic stem cell transplantation for BCR-ABL-positive acute lymphoblastic leukemia. Leukemia. 2011;25:41–7.

    Article  PubMed  CAS  Google Scholar 

  67. Schultz K, Bowman W, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children's Oncology Group Study. J Clin Oncol. 2009;27:5175–81.

    Article  PubMed  CAS  Google Scholar 

  68. Rives S, Estella J, Gómez P, et al. Intermediate dose of imatinib in combination with chemotherapy followed by allogeneic stem cell transplantation improves early outcome in paediatric Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL): results of the Spanish Cooperative Group SHOP studies ALL-94, ALL-99 and ALL-2005. Br J Haematol. 2011;154:600–11.

    Article  PubMed  CAS  Google Scholar 

  69. Burke M, Cao Q, Trotz B, et al. Allogeneic hematopoietic cell transplantation (allogeneic HCT) for treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer. 2009;53:1289–94.

    Article  PubMed  Google Scholar 

  70. Mohty M, Labopin M, Tabrizzi R, et al. Reduced intensity conditioning allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Haematologica. 2008;93:303–6.

    Article  PubMed  Google Scholar 

  71. Arnold R, Massenkeil G, Bornhauser M, et al. Nonmyeloablative stem cell transplantation in adults with high-risk ALL may be effective in early but not in advanced disease. Leukemia. 2002;16:2423–8.

    Article  PubMed  CAS  Google Scholar 

  72. Martino R, Giralt S, Caballero M, et al. Allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning in acute lymphoblastic leukemia: a feasibility study. Haematologica. 2003;88:555–60.

    PubMed  Google Scholar 

  73. Stein A, O’Donnell M, Snyder D, et al. Reduced-intensity stem cell transplantation for high-risk acute lymphoblastic leukaemia. Biol Blood Marrow Transplant. 2009;15:1407–14.

    Article  PubMed  Google Scholar 

  74. Bachanova V, Verneris M, DeFor T, et al. Prolonged survival in adults with acute lymphoblastic leukemia after reduced-intensity conditioning with cord blood or sibling donor transplantation. Blood. 2009;113:2902–5.

    Article  PubMed  CAS  Google Scholar 

  75. Ram R, Storb R, Sandmaier B, et al. Nonmyeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high risk acute lymphoblastic leukemia. Haematologica. 2011;96:1113–20.

    Article  PubMed  Google Scholar 

  76. Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111:1827–33.

    Article  PubMed  CAS  Google Scholar 

  77. Shin H, Chung J, Co G. Imatinib interim therapy between chemotherapeutic cycles and in vivo purging prior to autologous stem cell transplantation, followed by maintenance therapy is a feasible treatment strategy in Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant. 2005;36:917–8.

    Article  PubMed  CAS  Google Scholar 

  78. Wetzler M, Watson D, Stock W, et al. Autologous transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia achieves outcomes similar to allogeneic transplantation – results of CALGB 10001 (Alliance). [Abstract]. ASH 2012; Abstract no. 816.

  79. Wassmann B, Pfeifer H, Bethge W, et al. Up-front versus minimal residual disease triggered imatinib after stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukaemia: interim results of a randomized phase III GMALL study [Abstract]. Bone Marrow Transplant. 2009;43:S48.

    Google Scholar 

  80. Pfeifer H, Wassmann B, Bethge W, et al. Updated long-term results of a randomized comparison of prophylactic and pre-emptive imatinib following allogeneic stem cell transplantation for Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL). [Abstract]. Blood. 2011;118(s1):247.

    Google Scholar 

  81. Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100:1965–71.

    Article  PubMed  CAS  Google Scholar 

  82. Soverinin S, De Benedittis C, Polakova K, et al. Dissecting the complexity of Philadelphia-positive mutated population by ultra-deep sequencing of the BCR-ABL kinase domain: Biological and clinical implications. [Abstract]. ASH 2012; Abstract no. 692.

  83. Pullarkat V, Slovak M, Kopecky K, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111:2563–72.

    Article  PubMed  CAS  Google Scholar 

  84. Patel B, Rai L, Buck G, et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol. 2010;148:80–9.

    Article  PubMed  CAS  Google Scholar 

  85. Soverini S, De Benedittis C, Polakova K, et al. Ultra-deep sequencing of the BCR-ABL kinase domain allows earlier detection and more accurate characterization of resistant subclones in Philadelphia-positive acute lymphoblastic leukemia patients receiving tyrosine kinase inhibitor-based therapies. [Abstract]. ASH 2012; Abstract 284.

  86. Cortes J, Kim D-W, Pinilla-Ibarz J, et al. A pivotal phase 2 trial of ponatinib in patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) resistant or intolerant to dasatinib or nilotinib, or with the T315I BCR-ABL mutation: 12-month follow-up of the PACE trial. [Abstract]. ASH 2012; Abstract no. 163.

  87. Mortuza F, Papaioannou M, Moreira I, et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol. 2002;20:1094–104.

    Article  PubMed  Google Scholar 

  88. Preudhomme C, Henic N, Cazin B, et al. Good correlation between RT-PCR analysis and relapse in Philadelphia (Ph1)-positive acute lymphoblastic leukemia (ALL). Leukemia. 1997;11:294–8.

    Article  PubMed  CAS  Google Scholar 

  89. Pane F, Cimino G, Izzo B, et al. Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia positive acute lymphoblastic leukemia. Leukemia. 2005;19:628–35.

    PubMed  CAS  Google Scholar 

  90. Lee S, Kim D, Cho B, et al. Risk factors for adults with Philadelphia-chromosome-positive acute lymphoblastic leukaemia in remission treated with allogeneic bone marrow transplantation: the potential of real-time quantitative reverse-transcription polymerase chain reaction. Br J Haematol. 2003;120:145–53.

    Article  PubMed  CAS  Google Scholar 

  91. Leguay T, Witz F, De Botton S, et al. Post-Remission Therapy with Imatinib and HAM Improve MRD before Tansplant for Patients with Philadelphia-Positive Acute Lymphoblastic Leukemia (Ph+ ALL): results of the GRAALL AFR03 Study. [Abstract]. Blood. 2006;108:1877.

    Article  CAS  Google Scholar 

  92. Pfeifer H, Lange T, Wystub S, et al. Prevalence and dynamics of bcr-abl kinase domain mutations during imatinib treatment differ in patients with newly diagnosed and recurrent bcr-abl positive acute lymphoblastic leukemia. Leukemia. 2012;26:1475–81.

    Article  PubMed  CAS  Google Scholar 

  93. Wassmann B, Pfeifer H, Stadler M, et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2005;106:458–63.

    Article  PubMed  CAS  Google Scholar 

  94. Pfeifer H, Wettner C, Wassmann B, et al. Long term follow up of elderly patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL): updated results of the GMALL elderly trials. [Abstract]. Haematologica. 2012;97(s1):1124.

    Google Scholar 

  95. Pfeifer H, Wettner C, Wassman, et al. Long-term follow-up of 121 elderly patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) treated in prospective GMALL trials supports a greater emphasis on allogeneic SCT as definitive postremission therapy. ASH Abstract 2012; Abstract no. 2608.

  96. Rousselot P, Coudé M, Huguet F, et al. Dasatinib (Sprycel®) and Low intensity chemotherapy for first-line treatment in patients with de novo Philadelphia positive ALL aged 55 and over: final results of the EWALL-Ph-01 Study. [Abstract]. ASH 2012; Abstract no 666.

  97. Pfeifer H, Wystub S, Binkebanck A, et al. Imatinib (IM) and interferon-alpha (IFN-a) maintenance therapy is associated with long-term DFS in a subset of elderly patients with Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). [Abstract]. ASH 2012; Abstract no. 1503.

  98. Chelghoum Y, Vey N, Raffoux E, et al. Acute leukemia during pregnancy: a report on 37 patients and a review of the literature. Cancer. 2005;104:110–7.

    Article  PubMed  Google Scholar 

  99. Pizzuto J, Aviles A, Noriega L, et al. Treatment of acute leukemia during pregnancy: presentation of nine cases. Cancer Treat Rep. 1980;64:679–83.

    PubMed  CAS  Google Scholar 

  100. Reynoso EE, Shepherd FA, Messner HA, et al. Acute leukemia during pregnancy: the Toronto Leukemia Study Group experience with long-term follow-up of children exposed in utero to chemotherapeutic agents. J Clin Oncol. 1987;5:1098–106.

    PubMed  CAS  Google Scholar 

  101. Cardonick E, Iacobucci A. Use of chemotherapy during human pregnancy. Lancet Oncol. 2004;5:283–91.

    Article  PubMed  CAS  Google Scholar 

  102. Heartin E, Walkinshaw S, Clark R. Successful outcome of pregnancy in chronic myeloid leukaemia treated with imatinib. Leuk Lymphoma. 2004;45:1307–8.

    Article  PubMed  Google Scholar 

  103. Ault P, Kantarjian H, O’Brien S, et al. Pregnancy among patients with chronic myeloid leukemia treated with imatinib. J Clin Oncol. 2006;24:1204–8.

    Article  PubMed  CAS  Google Scholar 

  104. Ali R, Ozkalemkas F, Ozcelik T, et al. Pregnancy under treatment of imatinib and successful labor in a patient with chronic myelogenous leukemia (CML). Outcome of discontinuation of imatinib therapy after achieving a molecular remission. Leuk Res. 2005;29:971–3.

    Article  PubMed  CAS  Google Scholar 

  105. Hensley ML, Ford JM. Imatinib treatment: specifi c issues related to safety, fertility, and pregnancy. Semin Hematol. 2003;40:21–5.

    Article  PubMed  CAS  Google Scholar 

  106. Alkindi S, Dennison D, Pathare A. Imatinib in pregnancy. Eur J Haematol. 2005;74:535–7.

    Article  PubMed  Google Scholar 

  107. Choudhary DR, Mishra P, Kumar R, et al. Pregnancy on imatinib: fatal outcome with meningocele. Ann Oncol. 2006;17:178–9.

    Article  PubMed  CAS  Google Scholar 

  108. Fielding AK, Richards SM, Chopra R, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–50.

    Article  PubMed  CAS  Google Scholar 

  109. Oriol A, Vives S, Hernandez-Rivas J, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica. 2010;95:589–96.

    Article  PubMed  Google Scholar 

  110. Thomas D, Kantarjian H, Smith T, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer. 1999;86:1216–30.

    Article  PubMed  CAS  Google Scholar 

  111. Tavernier E, Boiron J, Huguet F, et al. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia. 2007;21:1907–14.

    Article  PubMed  CAS  Google Scholar 

  112. Ishida Y, Terasako K, Oshima K, et al. Dasatinib followed by second allogeneic hematopoietic stem cell transplantation for relapse of Philadelphia chromosome-positive acute lymphoblastic leukemia after the first transplantation. Int J Hematol. 2010;92:542–6.

    Article  PubMed  CAS  Google Scholar 

  113. Millot F, Cividin M, Brizard F, et al. Successful second allogeneic stem cell transplantation in second remission induced by dasatinib in a child with Philadelphia chromosome positive acute lymphoblastic leukemia. Pediatr Blood Cancer. 2009;52:891–2.

    Article  PubMed  Google Scholar 

  114. Ottmann O, Larson R, Kantarjian H, et al. Nilotinib in patients with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) who are resistant or intolerant to imatinib [Abstract]. Blood. 2007;110:Abstract 2815.

    Article  CAS  Google Scholar 

  115. Ottmann O, Larson R, Kantarjian H, et al. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012. doi:10.1038/leu.2012.324.

  116. Castillo E, Al-Rajabi R, Pandya D, et al. A pilot study of the combination of nilotinib and hyper-CVAD for Philadelphia chromosome positive acute lymphocytic leukemia and lymphoid blast crisis chronic myelogenous leukemia. Blood. 2010;116:885–6. abstract 2144.

    Google Scholar 

  117. Topp M, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.

    Article  PubMed  CAS  Google Scholar 

  118. Collins R, Goldstein S, Giralt S, et al. Donor leukocyte infusions in acute lymphoblastic leukemia. Bone Marrow Transplant. 2000;26:511–6.

    Article  PubMed  Google Scholar 

  119. Kolb H, Schattenberg A, Goldman J, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86:2041–50.

    PubMed  CAS  Google Scholar 

  120. Keil F, Kalhs P, Haas O, et al. Relapse of Philadelphia chromosome positive acute lymphoblastic leukemia after marrow transplantation: sustained molecular remission after early and dose-escalating infusion of donor leucocytes. Br J Haematol. 1997;97:161–4.

    Article  PubMed  CAS  Google Scholar 

  121. Yazaki M, Andoh M, Ito T, et al. Successful prevention of hematological relapse for a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic bone marrow transplantation by donor leukocyte infusion. Bone Marrow Transplant. 1997;19:393–4.

    Article  PubMed  CAS  Google Scholar 

  122. Matsue K, Tabayashi T, Yamada K, et al. Eradication of residual bcr-abl-positive clones by inducing graft-versus-host disease after allogeneic stem cell transplantation in patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant. 2002;29:63–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Fielding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fielding, A.K., Zakout, G.A. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 8, 98–108 (2013). https://doi.org/10.1007/s11899-013-0155-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0155-4

Keywords

Navigation