Skip to main content

Advertisement

Log in

Sex-based Differences in Heart Failure Biomarkers

  • Review
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Differences in HF biomarker levels by sex may be due to hormonal, genetic, and fat distribution differences. Knowledge of these differences is scarce, and it is not well established whether they may affect their usefulness in the management of HF.

Recent Findings

The different biomarker profiles in women and men have been confirmed in recent studies: in women, markers of cardiac stretch and fibrosis (NP and galectin-3) are higher, whereas in men, higher levels of markers of cardiac injury and inflammation (cTn and sST2) are found.

The use of new biomarkers, together with growing evidence that a multimarker approach can provide better risk stratification, raises the question of building models that incorporate sex-specific diagnostic criteria.

Summary

More and more research are being devoted to understanding sex-related differences in HF. The aim of this review is to review the dynamics of HF biomarkers according to sex and in different situations, to learn whether these sex differences may affect their use in the diagnosis and follow-up of HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

CTn:

Circulatory troponins

Gal-3:

Galectin-3

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

hs-Tn:

High-sensitivity troponin

NP:

Natriuretic peptide

NT-proBNP:

Amino-terminal pro-peptide fragment

sST2:

Soluble suppression of tumorgenicity 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J. 2020;5(0). https://doi.org/10.21037/AMJ.2020.03.03/COIF.

  2. Magnussen C, Niiranen TJ, Ojeda FM, et al. Sex-specific epidemiology of heart failure risk and mortality in Europe: results from the biomarCaRE consortium. JACC Heart Fail. 2019;7(3):204–13. https://doi.org/10.1016/J.JCHF.2018.08.008.

    Article  PubMed  Google Scholar 

  3. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–56. https://doi.org/10.1002/EJHF.1858.

    Article  PubMed  Google Scholar 

  4. Ambrosy AP, Fonarow GC, Butler J, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63(12):1123–33. https://doi.org/10.1016/J.JACC.2013.11.053.

    Article  PubMed  Google Scholar 

  5. McDonagh TA, Metra M, Adamo M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2023;44(37):3627–39. https://doi.org/10.1093/EURHEARTJ/EHAD195.

    Article  CAS  PubMed  Google Scholar 

  6. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  7. Díez-Villanueva P, Jiménez-Méndez C, Alfonso F, Díez-Villanueva P, Jiménez-Méndez C, Alfonso F. Heart failure in the elderly. J Geriatr Cardiol. 2021;18(3):219–32. https://doi.org/10.11909/J.ISSN.1671-5411.2021.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Postigo A, Martínez-Sellés M. Sex Influence on Heart Failure Prognosis. Front Cardiovasc Med. 2020;7:616273. https://doi.org/10.3389/FCVM.2020.616273/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Rao RA, Bhardwaj A, Munagala M, et al. Sex differences in circulating biomarkers of heart failure. Curr Heart Fail Rep. Published online December 7, 2023. https://doi.org/10.1007/s11897-023-00634-w. Excellent review of the most significant sex differences in biomarkers of HF.

  10. Marra AM, Salzano A, Arcopinto M, Piccioli L, Raparelli V. The impact of gender in cardiovascular medicine: Lessons from the gender/sex-issue in heart failure. Monaldi Arch chest Dis = Arch Monaldi per le Mal del torace. 2018;88(3):48–52. https://doi.org/10.4081/MONALDI.2018.988.

    Article  Google Scholar 

  11. •• Díez-Villanueva P, Jiménez-Méndez C, Bonanad C, et al. Sex differences in the impact of frailty in elderly outpatients with heart failure. Front Cardiovasc Med. 2022;9:1000700. https://doi.org/10.3389/FCVM.2022.1000700/BIBTEX. This study describes gender differences in frailty in the older HF population and highlights the most important differential characteristics.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lam CSP, Arnott C, Beale AL, et al. Sex differences in heart failure. Eur Heart J. 2019;40(47):3859–68. https://doi.org/10.1093/EURHEARTJ/EHZ835.

    Article  PubMed  Google Scholar 

  13. •• Suthahar N, Meems LMG, Ho JE, de Boer RA. Sex-related differences in contemporary biomarkers for heart failure: a review. Eur J Heart Fail. 2020;22(5):775–88. https://doi.org/10.1002/EJHF.1771. Extensive and comprehensive review on HF biomarkers and sex-based differences. Very easy to read and a wealth of knowledge.

    Article  PubMed  Google Scholar 

  14. Dewan P, Rørth R, Jhund PS, et al. Differential Impact of Heart Failure With Reduced Ejection Fraction on Men and Women. J Am Coll Cardiol. 2019;73(1):29–40. https://doi.org/10.1016/J.JACC.2018.09.081.

    Article  PubMed  Google Scholar 

  15. Levinsson A, Dubé MP, Tardif JC, de Denus S. Sex, drugs, and heart failure: a sex-sensitive review of the evidence base behind current heart failure clinical guidelines. ESC Hear Fail. 2018;5(5):745–54. https://doi.org/10.1002/EHF2.12307.

    Article  Google Scholar 

  16. Stolfo D, Uijl A, Vedin O, et al. Sex-based differences in heart failure across the ejection fraction spectrum: phenotyping, and prognostic and therapeutic implications. JACC Hear Fail. 2019;7(6):505–15. https://doi.org/10.1016/J.JCHF.2019.03.011.

    Article  Google Scholar 

  17. Regitz-Zagrosek V. Sex and gender differences in heart failure. Int J Hear Fail. 2020;2(3):157–81. https://doi.org/10.36628/IJHF.2020.0004.

    Article  Google Scholar 

  18. Meyer S, Van Der Meer P, Van Deursen VM, et al. Neurohormonal and clinical sex differences in heart failure. Eur Heart J. 2013;34(32):2538–47. https://doi.org/10.1093/EURHEARTJ/EHT152.

    Article  CAS  PubMed  Google Scholar 

  19. Díez-Villanueva P, Jiménez-Méndez C, López-Lluva MT, et al. Heart failure in the elderly: the role of biological and sociocultural aspects related to sex. Curr Heart Fail Rep. 2023;20(5):321–32. https://doi.org/10.1007/s11897-023-00619-9.

    Article  PubMed  Google Scholar 

  20. Piek A, Du W, de Boer RA, Silljé HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci. 2018;55(4):246–63. https://doi.org/10.1080/10408363.2018.1460576.

    Article  CAS  PubMed  Google Scholar 

  21. Berezin AE, Berezin AA. Biomarkers in heart failure: from research to clinical practice. Ann Lab Med. 2023;43(3):225–36. https://doi.org/10.3343/alm.2023.43.3.225.

    Article  CAS  PubMed  Google Scholar 

  22. Mongraw-Chaffin ML, Anderson CAM, Allison MA, et al. Association between sex hormones and adiposity: qualitative differences in women and men in the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2015;100(4):E596–600. https://doi.org/10.1210/JC.2014-2934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lau ES, Binek A, Parker SJ, et al. Sexual dimorphism in cardiovascular biomarkers: clinical and research implications. Circ Res. 2022;130(4):578–92. https://doi.org/10.1161/CIRCRESAHA.121.319916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zile MR, Desai AS, Agarwal R, et al. Prognostic value of brain natriuretic peptide vs history of heart failure hospitalization in a large real-world population. Clin Cardiol. 2020;43(12):1501–10. https://doi.org/10.1002/CLC.23468.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cesaroni G, Mureddu GF, Agabiti N, et al. Sex differences in factors associated with heart failure and diastolic left ventricular dysfunction: a cross-sectional population-based study. BMC Public Health. 2021;21(1):1–13. https://doi.org/10.1186/S12889-021-10442-3/FIGURES/2.

    Article  Google Scholar 

  26. Fradley MG, Larson MG, Cheng S, et al. Reference limits for N-terminal-pro-B-type natriuretic peptide in healthy individuals (from the Framingham Heart Study). Am J Cardiol. 2011;108(9):1341–5. https://doi.org/10.1016/j.amjcard.2011.06.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang AY, Abdullah SM, Jain T, et al. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the dallas heart study. J Am Coll Cardiol. 2007;49(1):109–16. https://doi.org/10.1016/J.JACC.2006.10.040.

    Article  CAS  PubMed  Google Scholar 

  28. de Lemos JA, Das SR. Closing the book on androgens and natriuretic peptides. J Am Coll Cardiol. 2019;73(11):1297–9. https://doi.org/10.1016/J.JACC.2018.12.061.

    Article  PubMed  Google Scholar 

  29. Cediel G, Codina P, Spitaleri G, et al. Gender-related differences in heart failure biomarkers. Front Cardiovasc Med. 2021;7:617705. https://doi.org/10.3389/FCVM.2020.617705/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  30. •• Maidana D, Bonanad C, Ortiz-Cortés C, et al. Sex-related differences in heart failure diagnosis. Curr Heart Fail Rep. 2023;20(4):254–62. https://doi.org/10.1007/S11897-023-00609-X/METRICS. Article reviewing the key issues in sex-based differential diagnosis in HF.

    Article  PubMed  Google Scholar 

  31. Suthahar N, Lau ES, Blaha MJ, et al. Sex-specific associations of cardiovascular risk factors and biomarkers with incident heart failure. J Am Coll Cardiol. 2020;76(12):1455–65. https://doi.org/10.1016/J.JACC.2020.07.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franke J, Lindmark A, Hochadel M, et al. Gender aspects in clinical presentation and prognostication of chronic heart failure according to NT-proBNP and the Heart Failure Survival Score. Clin Res Cardiol. 2015;104(4):334–41. https://doi.org/10.1007/S00392-014-0786-Z/FIGURES/1.

    Article  PubMed  Google Scholar 

  33. Myhre PL, Claggett B, Yu B, et al. Sex and race differences in N-Terminal Pro–B-type natriuretic peptide concentration and absolute risk of heart failure in the community. JAMA Cardiol. 2022;7(6):623–31. https://doi.org/10.1001/JAMACARDIO.2022.0680.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ndumele CE, Matsushita K, Sang Y, et al. N-Terminal Pro-brain natriuretic peptide and heart failure risk among individuals with and without obesity: the atherosclerosis risk in communities (ARIC) study. Circulation. 2016;133(7):631–8. https://doi.org/10.1161/CIRCULATIONAHA.115.017298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Das SR, Drazner MH, Dries DL, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides. Circulation. 2005;112(14):2163–8. https://doi.org/10.1161/CIRCULATIONAHA.105.555573.

    Article  CAS  PubMed  Google Scholar 

  36. Suthahar N, Meijers WC, Ho JE, et al. Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail. 2018;20(8):1205–14. https://doi.org/10.1002/EJHF.1209.

    Article  CAS  PubMed  Google Scholar 

  37. Romiti GF, Cangemi R, Toriello F, et al. Sex-specific cut-offs for high-sensitivity cardiac troponin: Is Less More? Cardiovasc Ther. 2019;2019. https://doi.org/10.1155/2019/9546931.

  38. Januzzi JL, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: on behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33(18):2265–71. https://doi.org/10.1093/EURHEARTJ/EHS191.

    Article  CAS  PubMed  Google Scholar 

  39. Evans JDW, Dobbin SJH, Pettit SJ, Di Angelantonio E, Willeit P. High-sensitivity cardiac troponin and new-onset heart failure: a systematic review and meta-analysis of 67,063 patients with 4,165 incident heart failure events. JACC Hear Fail. 2018;6(3):187–97. https://doi.org/10.1016/J.JCHF.2017.11.003.

    Article  Google Scholar 

  40. Gohar A, Chong JPC, Liew OW, et al. The prognostic value of highly sensitive cardiac troponin assays for adverse events in men and women with stable heart failure and a preserved vs. reduced ejection fraction. Eur J Heart Fail. 2017;19(12):1638–47. https://doi.org/10.1002/EJHF.911.

    Article  CAS  PubMed  Google Scholar 

  41. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the american college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145(18):E895–1032. https://doi.org/10.1161/CIR.0000000000001063.

    Article  PubMed  Google Scholar 

  42. Ndumele CE, Coresh J, Lazo M, et al. Obesity, subclinical myocardial injury, and incident heart failure. JACC Hear Fail. 2014;2(6):600–7. https://doi.org/10.1016/J.JCHF.2014.05.017.

    Article  Google Scholar 

  43. Bayés-Genis A, González A, Lupón J. ST2 in Heart Failure. Circ Heart Fail. 2018;11(12):e005582. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005582.

    Article  PubMed  Google Scholar 

  44. Dieplinger B, Januzzi JL, Steinmair M, et al. Analytical and clinical evaluation of a novel high-sensitivity assay for measurement of soluble ST2 in human plasma — The Presage™ ST2 assay. Clin Chim Acta. 2009;409(1–2):33–40. https://doi.org/10.1016/J.CCA.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  45. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan heart failure trial. Circ Hear Fail. 2014;7(3):418–26. https://doi.org/10.1161/CIRCHEARTFAILURE.113.001036/-/DC1.

    Article  CAS  Google Scholar 

  46. Coglianese EE, Larson MG, Vasan RS, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the framingham heart study. Clin Chem. 2012;58(12):1673–81. https://doi.org/10.1373/CLINCHEM.2012.192153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dieplinger B, Egger M, Poelz W, Gabriel C, Haltmayer M, Mueller T. Soluble ST2 is not independently associated with androgen and estrogen status in healthy males and females. Clin Chem Lab Med. 2011;49(9):1515–8. https://doi.org/10.1515/CCLM.2011.239/MACHINEREADABLECITATION/RIS.

    Article  CAS  PubMed  Google Scholar 

  48. Lew J, Sanghavi M, Ayers CR, et al. Sex-based differences in cardiometabolic biomarkers. Circulation. 2017;135(6):544–55. https://doi.org/10.1161/CIRCULATIONAHA.116.023005/-/DC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arrieta V, Jover E, Navarro A, et al. Soluble ST2 levels are related to replacement myocardial fibrosis in severe aortic stenosis. Rev Esp Cardiol (Engl Ed). Published online December 2022. https://doi.org/10.1016/J.REC.2022.12.007.

  50. Sharma UC, Pokharel S, Van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8. https://doi.org/10.1161/01.CIR.0000147181.65298.4D.

    Article  CAS  PubMed  Google Scholar 

  51. Suthahar N, Meijers WC, Silljé HHW, Ho JE, Liu FT, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics. 2018;8(3):593–609. https://doi.org/10.7150/THNO.22196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau ES, Liu E, Paniagua SM, et al. Galectin-3 inhibition with modified citrus pectin in hypertension. JACC Basic to Transl Sci. 2021;6(1):12–21. https://doi.org/10.1016/J.JACBTS.2020.10.006.

    Article  Google Scholar 

  53. Jagodzinski A, Havulinna AS, Appelbaum S, et al. Predictive value of galectin-3 for incident cardiovascular disease and heart failure in the population-based FINRISK 1997 cohort. Int J Cardiol. 2015;192:33–9. https://doi.org/10.1016/j.ijcard.2015.05.040.

    Article  PubMed  Google Scholar 

  54. Dekleva M, Djuric T, Djordjevic A, et al. Sex related difference in heart failure development in patients after first myocardial infarction; role of galectine-3. Eur Heart J. 2022;43(Supplement_2). https://doi.org/10.1093/EURHEARTJ/EHAC544.816.

  55. Motiwala SR, Szymonifka J, Belcher A, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 2013;15(10):1157–63. https://doi.org/10.1093/EURJHF/HFT075.

    Article  CAS  PubMed  Google Scholar 

  56. Wang T, Liu J, McDonald C, et al. GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol Med. 2017;9(8):1150–64. https://doi.org/10.15252/EMMM.201707604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and cardiac cells: current concepts and new insights. Int J Mol Sci. 2021;22(16):8889. https://doi.org/10.3390/IJMS22168889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li N, Feng Q, Yu F, Zhou J, Guo X. Plasma growth differentiation factor-15 in patients with “lone” atrial fibrillation. J Clin Lab Anal. 2022;36(5):e24373. https://doi.org/10.1002/JCLA.24373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matusik PT, Małecka B, Lelakowski J, Undas A. Association of NT-proBNP and GDF-15 with markers of a prothrombotic state in patients with atrial fibrillation off anticoagulation. Clin Res Cardiol. 2020;109(4):426–34. https://doi.org/10.1007/S00392-019-01522-X/FIGURES/1.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Yang F, Ma M, et al. The impact of growth differentiation factor 15 on the risk of cardiovascular diseases: two-sample Mendelian randomization study. BMC Cardiovasc Disord. 2020;20(1):1–7. https://doi.org/10.1186/S12872-020-01744-2/TABLES/1.

    Article  Google Scholar 

  61. Ho JE, Mahajan A, Chen MH, et al. Clinical and genetic correlates of growth differentiation factor 15 in the community. Clin Chem. 2012;58(11):1582–91. https://doi.org/10.1373/CLINCHEM.2012.190322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Núñez J, de la Espriella R, Rossignol P, et al. Congestion in heart failure: a circulating biomarker-based perspective. A review from the biomarkers working group of the heart failure association, European society of cardiology. Eur J Heart Fail. 2022;24(10):1751–66. https://doi.org/10.1002/EJHF.2664.

    Article  PubMed  Google Scholar 

  63. Núñez J, de la Espriella R, Miñana G, et al. Antigen carbohydrate 125 as a biomarker in heart failure: a narrative review. Eur J Heart Fail. 2021;23(9):1445–57. https://doi.org/10.1002/EJHF.2295.

    Article  PubMed  Google Scholar 

  64. Núñez J, Núñez E, Bayés-Genís A, et al. Long-term serial kinetics of N-terminal pro B-type natriuretic peptide and carbohydrate antigen 125 for mortality risk prediction following acute heart failure. Eur Hear J Acute Cardiovasc Care. 2017;6(8):685–96. https://doi.org/10.1177/2048872616649757.

    Article  Google Scholar 

  65. Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019;12(1):1–9. https://doi.org/10.1186/S13048-019-0503-7/TABLES/2.

    Article  Google Scholar 

  66. Menghoum N, Badii MC, Deltombe M, et al. Carbohydrate antigen 125: a useful marker of congestion, fibrosis, and prognosis in heart failure with preserved ejection fraction. ESC Hear Fail. Published online February 9, 2024. https://doi.org/10.1002/EHF2.14699.

  67. Méndez AB, Ordoñez-Llanos J, Ferrero A, et al. Prognostic value of increased carbohydrate antigen in patients with heart failure. World J Cardiol. 2014;6(4):205–12. https://doi.org/10.4330/wjc.v6.i4.205.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Arao K, Yoshikawa T, Isogai T, et al. A study of takotsubo syndrome over 9 years at the Tokyo Cardiovascular Care Unit Network Registry. J Cardiol. 2023;82(2):93–9. https://doi.org/10.1016/j.jjcc.2022.12.011.

    Article  PubMed  Google Scholar 

  69. Davis MB, Arany Z, McNamara DM, Goland S, Elkayam U. Peripartum cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(2):207–21. https://doi.org/10.1016/J.JACC.2019.11.014.

    Article  CAS  PubMed  Google Scholar 

  70. Paynter NP, Chasman DI, Paré G, et al. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303(7):631–7. https://doi.org/10.1001/JAMA.2010.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Azibani F, Sliwa K. Peripartum cardiomyopathy: an update. Curr Heart Fail Rep. 2018;15(5):297–306. https://doi.org/10.1007/S11897-018-0404-X/FIGURES/1.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ersbøll AS, Goetze JP, Johansen M, et al. Biomarkers and their relation to cardiac function late after peripartum cardiomyopathy. J Card Fail. 2021;27(2):168–75. https://doi.org/10.1016/j.cardfail.2021.01.002.

    Article  PubMed  Google Scholar 

  73. Stone JR, Kanneganti R, Abbasi M, Akhtari M. Monitoring for chemotherapy-related cardiotoxicity in the form of left ventricular systolic dysfunction: a review of current recommendations. JCO Oncol Pract. 2021;17(5):228–36. https://doi.org/10.1200/OP.20.00924/ASSET/IMAGES/LARGE/OP.20.00924F2.JPEG.

    Article  PubMed  Google Scholar 

  74. Wilcox NS, Rotz SJ, Mullen M, et al. Sex-specific cardiovascular risks of cancer and its therapies. Circ Res. 2022;130(4):632–51. https://doi.org/10.1161/CIRCRESAHA.121.319901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Demissei BG, Hubbard RA, Zhang L, et al. Changes in cardiovascular biomarkers with breast cancer therapy and associations with cardiac dysfunction. J Am Heart Assoc. 2020;9(2). https://doi.org/10.1161/JAHA.119.014708.

  76. Riccardi M, Myhre PL, Zelniker TA, Metra M, Januzzi JL, Inciardi RM. Soluble ST2 in heart failure: a clinical role beyond B-Type natriuretic peptide. J Cardiovasc Dev Dis. 2023;10(11):468. https://doi.org/10.3390/JCDD10110468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pérez-Sanz TM, Gómez-Salvador I, Codina P, et al. Soluble ST2, BCN-Bio-HF calculator and MAGGIC-HF score in long-term risk prediction after an urgent visit for heart failure. Heart Vessels. Published online October 23, 2023:1–10. https://doi.org/10.1007/S00380-023-02327-9/METRICS.

  78. Alma LJ, Bokslag A, Maas AHEM, Franx A, Paulus WJ, de Groot CJM. Shared biomarkers between female diastolic heart failure and pre-eclampsia: a systematic review and meta-analysis. ESC Hear Fail. 2017;4(2):88–98. https://doi.org/10.1002/EHF2.12129.

    Article  Google Scholar 

  79. Takvorian KS, Wang D, Courchesne P, et al. The association of protein biomarkers with incident heart failure with preserved and reduced ejection fraction. Circ Hear Fail. 2023;16(1):E009446. https://doi.org/10.1161/CIRCHEARTFAILURE.121.009446.

    Article  CAS  Google Scholar 

  80. Chandramouli C, Ting TW, Tromp J, et al. Sex differences in proteomic correlates of coronary microvascular dysfunction among patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2022;24(4):681–4. https://doi.org/10.1002/EJHF.2435.

    Article  CAS  PubMed  Google Scholar 

  81. Chirinos JA, Zhao L, Reese-Petersen AL, et al. Endotrophin, a Collagen VI Formation–Derived Peptide, in Heart Failure. NEJM Evid. 2022;1(10). https://doi.org/10.1056/EVIDOA2200091.

  82. Raafs A, Verdonschot J, Ferreira JP, et al. Identification of sex-specific biomarkers predicting new-onset heart failure. ESC Hear Fail. 2021;8(5):3512–20. https://doi.org/10.1002/EHF2.13476.

    Article  Google Scholar 

  83. de Bakker M, Loncq de Jong M, Petersen T, et al. Sex-specific cardiovascular protein levels and their link with clinical outcome in heart failure. ESC Hear Fail. 2024;11(1):594–600. https://doi.org/10.1002/EHF2.14578.

  84. Woolley RJ, Ceelen D, Ouwerkerk W, et al. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23(6):983–91. https://doi.org/10.1002/EJHF.2144.

    Article  CAS  PubMed  Google Scholar 

  85. Ventura-Clapier R, Dworatzek E, Seeland U, et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc Res. 2017;113(7):711–24. https://doi.org/10.1093/CVR/CVX066.

    Article  CAS  PubMed  Google Scholar 

  86. Florijn BW, Bijkerk R, Van Der Veer EP, Van Zonneveld AJ. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res. 2018;114(2):210–25. https://doi.org/10.1093/CVR/CVX223.

    Article  CAS  PubMed  Google Scholar 

  87. Carroll JS, Meyer CA, Song J, et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006;38(11):1289–97. https://doi.org/10.1038/NG1901.

    Article  CAS  PubMed  Google Scholar 

  88. Song R, Ro S, Michaels JD, Park C, Mccarrey JR, Yan W. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet. 2009;41(4):488–93. https://doi.org/10.1038/NG.338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chirinos JA, Orlenko A, Zhao L, et al. multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2020;75(11):1281–95. https://doi.org/10.1016/J.JACC.2019.12.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kobayashi M, Huttin O, Magnusson M, et al. Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals. JACC Cardiovasc Imaging. 2022;15(2):193–208. https://doi.org/10.1016/J.JCMG.2021.07.004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been funded by the Instituto de Salud Carlos III (ISCIII) through project "PI23/00293" and co-funded by the European Union. MM is supported by the Miguel Servet II program (CPII22/00013) and ARM has a Río Hortega contract [CM23/00125] funded by the Instituto de Salud Carlos III. The editors would like to thank Dr. Kai M. Eggers for handling the review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the preparation of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mora Murri Pierri.

Ethics declarations

Conflict of Interest

Ainhoa Robles-Mezcua, Nelsa González Aguado, Antonia Pilar Martin de la Rosa, Concepción Cruzado-Álvarez, Clara Jiménez Rubio, Alejandro I Pérez Cabeza, Juan José Gómez-Doblas, Manuel F. Jiménez-Navarro, Mora Murri Pierri, José M. García-Pinilla declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any human or animal studies conducted by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles-Mezcua, A., Aguado, N.G., de la Rosa, A.P.M. et al. Sex-based Differences in Heart Failure Biomarkers. Curr Heart Fail Rep (2024). https://doi.org/10.1007/s11897-024-00665-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11897-024-00665-x

Keywords

Navigation