Skip to main content

Advertisement

Log in

Myocardial Involvement in Rheumatic Disorders

  • Imaging in Heart Failure (J Schulz-Menger, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Autoimmune rheumatic diseases (ARDs) affect 8% of the population and approximately 78% of patients are women. Myocardial disease in ARDs is the endpoint of various pathophysiologic mechanisms including atherosclerosis, valvular disease, systemic, myocardial, and/or vascular inflammation, as well as myocardial ischemia and replacement/diffuse fibrosis.

Recent Findings

The increased risk of CVD in ARDs leads to excess comorbidity not fully explained by traditional cardiovascular risk factors. It seems that the chronic inflammatory status typically seen in ARDs, promotes both the development of myocardial inflammation/fibrosis and the acceleration of atherosclerosis.

Summary

CMR (cardio-vascular magnetic resonance) is the ideal imaging modality for the evaluation of cardiac involvement in patients with ARDs, as it can simultaneously assess cardiac function and characterize myocardial tissues with regard to oedema and fibrosis. Due to its high spatial resolution, CMR is capable of identifying various disease entities such as myocardial oedema /inflammation, subendocardial vasculitis and myocardial fibrosis, that are often missed by other imaging modalities, notably at an early stage of development. Although generally accepted guidelines about the application of CMR in ARDs have not yet been formulated, according to our experience and the available published literature, we recommend CMR in ARD patientS with new-onset heart failure (HF), arrhythmia, for treatment evaluation/change or if there is any mismatch between patient symptoms and routine non-invasive evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mavrogeni SI, Markousis-Mavrogenis G, Koutsogeorgopoulou L, Dimitroulas T, Vartela V, Rigopoulos A, et al. Pathophysiology and imaging of heart failure in women with autoimmune rheumatic diseases. Heart Fail Rev. 2019. https://doi.org/10.1007/s10741-019-09779-0.

  2. Gasparyan AY. Cardiovascular risk and inflammation: pathophysiological mechanisms, drug design, and targets. Curr Pharm Des. 2012;18:1447–9.

    CAS  PubMed  Google Scholar 

  3. Dimitroulas T, Giannakoulas G, Karvounis H, Garyfallos A, Settas L, Kitas GD. Micro- and macrovascular treatment targets in scleroderma heart disease. Curr Pharm Des. 2014;20(4):536–44.

    CAS  PubMed  Google Scholar 

  4. Al-Dhaher FF, Pope JE, Ouimet JM. Determinants of morbidity and mortality of systemic sclerosis in Canada. Semin Arthritis Rheum. 2010;39:269–77.

    PubMed  Google Scholar 

  5. Esdaile JM, Abrahamowicz M, Grodzicky T, et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum. 2001;44:2331–7.

    CAS  PubMed  Google Scholar 

  6. Wållberg-Jonsson S, Öhman M-L, Rantapää-Dahlqvist S. Cardiovascular morbidity and mortality in patients with seropositive rheumatoid arthritis in Northern Sweden. J Rheumatol. 1997;24:445–51.

    PubMed  Google Scholar 

  7. Solomon DH, Karlson EW, Rimm EB, et al. Cardiovascular morbidity and morta-lity in women diagnosed with rheumatoid arthritis. Circulation. 2003;107:1303–7.

    PubMed  Google Scholar 

  8. Turesson C, Jarenros A, Jacobsson LT. Increased incidence of cardiovascular disease in patients with rheumatoid arthritis – results from a community based study. Ann Rheum Dis. 2004;63:952–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mavrogeni SI, Kitas GD, Dimitroulas T, Sfikakis PP, Seo P, Gabriel S, et al. Cardiovascular magnetic resonance in rheumatology: current status and recommendations for use. Int J Cardiol. 2016;217:135–48.

    PubMed  Google Scholar 

  10. Mantel A, Holmqvis M, Andersson DC, Lund LH, Askling J. Association between rheumatoid arthritis and risk of ischemic and nonischemic heart failure. J Am Coll Cardiol. 2017;69:1275–85.

    PubMed  Google Scholar 

  11. Kitas GD, Gabriel SE. Cardiovascular disease in rheumatoid arthritis: state of the art and future perspectives. Ann Rheum Dis. 2011;70:8–14.

    PubMed  Google Scholar 

  12. Maradit-Kremers H, Crowson CS, Nicola PJ, et al. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 2005;52(2):402–11.

    PubMed  Google Scholar 

  13. Stamatelopoulos KS, Kitas GD, Papamichael CM, et al. Atherosclerosis in rheumatoid arthritis versus diabetes: a comparative study. Arterioscler Thromb Vasc Biol. 2009;29(10):1702–8.

    CAS  PubMed  Google Scholar 

  14. Mavrogeni S, Karabela G, Stavropoulos E, Gialafos E, Sfendouraki E, Kyrou L, et al. Imaging patterns of heart failure in rheumatoid arthritis evaluated by cardiovascular magnetic resonance. Int J Cardiol. 2013;168(4):4333–5.

    PubMed  Google Scholar 

  15. Szabo SM, Levy AR, Rao SR, Kirbach SE, Lacaille D, Cifaldi M, et al. Increased risk of cardiovascular and cerebrovascular diseases in individuals with ankylosing spondylitis: a population-based study. Arthritis Rheum. 2011;63(11):3294–304.

    PubMed  Google Scholar 

  16. Rozin AP, Hasin T, Toledano K, Guralnik L, Balbir-Gurman A. Seronegative polyarthritis as severe systemic disease. Neth J Med. 2010;68(6):236–41.

    CAS  PubMed  Google Scholar 

  17. Tincani A, Rebaioli CB, Taglietti M, Shoenfeld Y. Heart involvement in systemic lupus erythematosus, anti-phospholipid syndrome and neonatal lupus. Rheumatology. 2006;45(Supplement 4):iv8–iv13.

    PubMed  Google Scholar 

  18. Doria A, Iaccarino L, Sarzi-Puttini P, et al. Cardiovascular involvement in systemic lupus erythemathosus. Lupus. 2005;14:683–6.

    CAS  PubMed  Google Scholar 

  19. Ishimori ML, Martin R, Berman DS, Goykhman P, Shaw LJ, Shufelt C, et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc Imaging. 2011;4:27–33.

    PubMed  Google Scholar 

  20. O’Neill SG, Woldman S, Bailliard F, Norman W, McEwan J, Isenberg DA, et al. Cardiac magnetic resonance imaging in patients with systemic lupus erythematosus. Ann Rheum Dis. 2009;68:1478–81.

    PubMed  Google Scholar 

  21. Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994;37:187–92.

    CAS  PubMed  Google Scholar 

  22. Miloslavsky E, Unizony S. The heart in vasculitis. Rheum Dis Clin N Am. 2014;40(1):11–26.

    Google Scholar 

  23. Sunderkötter C, Sindrilaru A. Clinical classification of vasculitis. Eur J Dermatol. 2006;16:114–24.

    PubMed  Google Scholar 

  24. Gonzales Lopez L, Gamez-Nava JI, Sanchez L, et al. Cardiac manifestations in dermato-polymyositis. Clin Exp Rheumatol. 1996;14:373–9.

    Google Scholar 

  25. Steen V. The heart in systemic sclerosis. Curr Rheumatol Rep. 2004;6:137–40.

    PubMed  Google Scholar 

  26. Ioannidis JP, Vlachoyiannopoulos PG, Haidich AB, et al. Mortality in systemic sclerosis: an international meta-analysis of individual patient data. Am J Med. 2005;118:2–10.

    PubMed  Google Scholar 

  27. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66:940–4.

    PubMed  PubMed Central  Google Scholar 

  28. Gargani L, Voilliot D, D’Alto M, Agoston G, Moreo A, Serra W, et al. Pulmonary circulation on the crossroads between the left and right heart in systemic sclerosis: a clinical challenge for cardiologists and rheumatologists. Heart Fail Clin. 2018;14:271–81.

    PubMed  Google Scholar 

  29. Tani C, Carli L, Vagnani S, Talarico R, Baldini C, Mosca M, et al. The diagnosis and classification of mixed connective tissue disease. J Autoimmun. 2014;S0896–8411(14):00010–9.

    Google Scholar 

  30. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Forceon Practice Guidelines (Writing Committee to Update the2001 Guidelines for the Evaluation and Management of HeartFailure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112(12):e154–235.

    PubMed  Google Scholar 

  31. Nicola PJ, Crowson CS, Maradit-Kremers H, Ballman KV, Roger VL, Jacobsen SJ, et al. Contribution of congestive heart failure and ischemic heart disease to excess mortality in rheumatoid arthritis. Arthritis Rheum. 2006;54:60–7.

    PubMed  Google Scholar 

  32. Wolfe F, Michaud K. Heart failure in rheumatoid arthritis: rates, predictors, and the effect of anti-tumour necrosis factor therapy. Am J Med. 2004;116:305–11.

    PubMed  Google Scholar 

  33. Gonzalez-Juanatey C, Testa A, Garcia-Castelo A, Garcia-Porrua C, Llorca J, Ollier WE, et al. Echocardiographic and Doppler findings in long-term treated rheumatoid arthritis patients without clinically evident cardiovascular disease. Semin Arthritis Rheum. 2004;33:231–8.

    PubMed  Google Scholar 

  34. Amigues I, Tugcu A, Russo C, Giles JT, Morgenstein R, Zartoshti A, et al. Myocardial inflammation, measured using 18-fluorodeoxyglucose positron emission tomography with computed tomography, is associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2019;71(4):496–506.

    CAS  Google Scholar 

  35. Liao KP, Huang J, He Z, Cremone G, Lam E, Hainer JM, Morgan V, Bibbo C, Di Carli M. Coronary microvascular dysfunction in rheumatoid arthritis compared to diabetes mellitus and association with all-cause mortality. Arthritis Care Res (Hoboken). 2019.

  36. Mavrogeni S, Koutsogeorgopoulou L, Markousis-Mavrogenis G, Bounas A, Tektonidou M, Lliossis SC, et al. Cardiovascular magnetic resonance detects silent heart disease missed by echocardiography in systemic lupus erythematosus. Lupus. 2018;27(4):564–71.

    CAS  PubMed  Google Scholar 

  37. Pieretti J, Roman MJ, Devereux RB, Lockshin MD, Crow MK, Paget SA, et al. Systemic lupus erythematosus predicts increased left ventricular mass. Circulation. 2007;116:419–26.

    PubMed  Google Scholar 

  38. Li H, Tong Q, Guo L, Yu S, Li Y, Cao Q, et al. Risk of Coronary Artery Disease in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Am J Med Sci. 2018;356(5):451–63.

    PubMed  Google Scholar 

  39. Gargani L, Todiere G, Guiducci S, et al. Early detection of cardiac involvement in systemic sclerosis: the added value of magnetic resonance imaging. JACC Cardiovasc Imaging. 2019;12(5):927–8.

    PubMed  Google Scholar 

  40. Roman MJ, Salmon JE. Cardiovascular manifestations of rheumatologic diseases. Circulation. 2007;116:2346–55.

    PubMed  Google Scholar 

  41. Follansbee WP, Curtiss EI, Medsger TA Jr, Steen VD, Uretsky BF, Owens GR, et al. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma. N Engl J Med. 1984;310:142–8.

    CAS  PubMed  Google Scholar 

  42. Cheng KS, Tiwari A, Boutin A, Denton CP, Black CM, Morris R, et al. Carotid and femoral arterial wall mechanics in scleroderma. Rheumatology (Oxford). 2003;42:1299–305.

    Google Scholar 

  43. Szabo SM, Levy AR, Rao SR, Kirbach SE, Lacaille D, Cifaldi M, et al. Increased risk of cardiovascular and cerebrovascular diseases in individuals with ankylosing spondylitis: a population-based study. Arthritis Rheum. 2011;63:3294–304.

    PubMed  Google Scholar 

  44. Chen Y, Chung HY, Zhao CT, Wong A, Zhen Z, Tsang HH, et al. Left ventricular myocardial dysfunction and premature atherosclerosis in patients with axial spondyloarthritis. Rheumatology. 2015;54:292–301.

    CAS  PubMed  Google Scholar 

  45. Allanore Y, Vignaux O, Arnaud L, Puéchal X, Pavy S, Duboc D, et al. Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy related myocarditis evaluated by magnetic resonance imaging. Ann Rheum Dis. 2006;65(2):249–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bechman K, Gopalan D, Nihoyannopoulos P, Mason JC. A cohort study reveals myocarditis to be a rare and life-threatening presentation of large vessel vasculitis. Semin Arthritis Rheum. 2017;47(2):241–6.

    PubMed  Google Scholar 

  47. Mavrogeni SI, Sfikakis PP, Dimitroulas T, Koutsogeorgopoulou L, Katsifis G, Markousis-Mavrogenis G, et al. Can cardiovascular magnetic resonance prompt early cardiovascular/rheumatic treatment in autoimmune rheumatic diseases? Current practice and future perspectives. Rheumatol Int. 2018;38(6):949–58.

    CAS  PubMed  Google Scholar 

  48. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. Black blood T2-weighted inversion-recovery MR imaging of the heart. Radiology. 1996;199:49–57.

    CAS  PubMed  Google Scholar 

  49. Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis - comparison of different approaches. J Am Coll Cardiol. 2005;45:1815–22.

    PubMed  Google Scholar 

  50. Schwitter J. Myocardial perfusion imaging by cardiac magnetic resonance. J Nucl Cardiol. 2006;13:841–854. 21.

    PubMed  Google Scholar 

  51. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103:2230–5.

    CAS  PubMed  Google Scholar 

  52. Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P, Kozerke S. Dynamic contrast-enhanced myocardial perfusion MRI accelerated with k-t sense. Magn Reson Med. 2007;58:777–85.

    PubMed  Google Scholar 

  53. Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E, et al. Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease. Radiology. 2008;247:57–63.

    PubMed  Google Scholar 

  54. Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, et al. Cardiovascular magnetic resonance perfusion imaging at 3-T for the detection of coronary artery disease: a comparison with 1.5-T. J Am Coll Cardiol. 2007;49:2440–9.

    PubMed  Google Scholar 

  55. Fritz-Hansen T, Hove JD, Kofoed KF, Kelbaek H, Larsson HB. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography. J Magn Reson Imaging. 2008;27:818–24.

    PubMed  Google Scholar 

  56. Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys. 1998;25:73–84.

    CAS  PubMed  Google Scholar 

  57. Selvanayagam JB, Jerosch-Herold M, Porto I, Sheridan D, Cheng AS, Petersen SE, et al. Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation. 2005;112:3289–96.

    PubMed  Google Scholar 

  58. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, et al. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;108:432–7.

    PubMed  Google Scholar 

  59. Cullen JH, Horsfield MA, Reek CR, Cherryman GR, Barnett DB, Samani NJ. A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol. 1999;33:1386–94.

    CAS  PubMed  Google Scholar 

  60. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379–83.

    CAS  PubMed  Google Scholar 

  61. Kwong RY, Ge Y, Steel K, Bingham S, Abdullah S, Fujikura K, et al. Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain. J Am Coll Cardiol. 2019;74(14):1741–55.

    PubMed  PubMed Central  Google Scholar 

  62. Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation. 1996;94:3318–26.

    CAS  PubMed  Google Scholar 

  63. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    CAS  PubMed  Google Scholar 

  64. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, et al. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation. 1995;92:1902–10.

    CAS  PubMed  Google Scholar 

  65. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100:1992–2002.

    CAS  PubMed  Google Scholar 

  66. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol. 2000;36:1985–91.

    CAS  PubMed  Google Scholar 

  67. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ. Visualization of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet. 2001;357:21–8.

    CAS  PubMed  Google Scholar 

  68. Kaandorp TA, Lamb HJ, Poldermans D, Viergever EP, Boersma E, van der Wall EE, et al. Assessment of right ventricular infarction with contrast-enhanced magnetic resonance imaging. Coron Artery Dis. 2007;18:39–43.

    PubMed  Google Scholar 

  69. Kumar A, Abdel-Aty H, Kriedemann I, Schulz-Menger J, Gross CM, Dietz R, et al. Contrast enhanced cardiovascular magnetic resonance imaging of right ventricular infarction. J Am Coll Cardiol. 2006;48:1969–76.

    PubMed  Google Scholar 

  70. Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, et al. Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol. 2007;49:855–62.

    PubMed  Google Scholar 

  71. Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105:162–7.

    Google Scholar 

  72. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361:374–9.

    PubMed  Google Scholar 

  73. Bondarenko O, Beek AM, Nijveldt R, McCann GP, van Dockum WG, Hofman MB, et al. Functional outcome after revascularization in patients with chronic ischemic heart disease: a quantitative late gadolinium enhancement CMR study evaluating transmural scar extent, wall thickness and periprocedural necrosis. J Cardiovasc Magn Reson. 2007;9:815–21.

    PubMed  Google Scholar 

  74. Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Varlamis G, et al. Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson. 2006;8(3):493–8.

    PubMed  Google Scholar 

  75. Mavrogeni SI, Markousis-Mavrogenis G, Karapanagiotou O, Toutouzas K, Argyriou P, Velitsista S, et al. Silent myocardial perfusion abnormalities detected by stress cardiovascular magnetic resonance in antiphospholipid syndrome: a case-control study. J Clin Med. 2019;8(7):E1084.

    PubMed  Google Scholar 

  76. Mavrogeni S, Koutsogeorgopoulou L, Markousis-Mavrogenis G, Bounas A, Tektonidou M, Lliossis SC, et al. Cardiovascular magnetic resonance detects silent heart disease missed by echocardiography in systemic lupus erythematosus. Lupus. 2018;27(4):564–71.

    CAS  PubMed  Google Scholar 

  77. Mavrogeni S, Gargani L, Pepe A, Monti L, Markousis-Mavrogenis G, Santis M, et al. Cardiac magnetic resonance predicts ventricular arrhythmias in scleroderma: the Scleroderma Arrhythmia Clinical Utility Study (SAnCtUS). Rheumatology (Oxford). 2019;25:kez494.

    Google Scholar 

  78. Mavrogeni S, Apostolou D, Argyriou P, Velitsista S, Papa L, Efentakis S, et al. T1 and T2 Mapping in cardiology: “Mapping the Obscure Object of Desire”. Cardiology. 2017;138(4):207–17.

    CAS  PubMed  Google Scholar 

  79. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009;53(17):1475–87.

    PubMed  PubMed Central  Google Scholar 

  80. Afonso L, Hari P, Pidlaoan V, Kondur A, Jacob S, Khetarpal V. Acute myocarditis: can novel echocardiographic techniques assist with diagnosis? Eur J Echocardiogr. 2010;11(3):E5 Epub 2009 Nov 24.

    PubMed  Google Scholar 

  81. Kuhl U, Lauer B, Souvatzoglu M, Vosberg H, Schultheiss HP. Antimyosin scintigraphy and immunohistologic analysis of endomyocardial biopsy in patients with clinically suspected myocarditis: evidence of myocardial cell damage and inflammation in the absence of histologic signs of myocarditis. J Am Coll Cardiol. 1998;32:1371–6.

    CAS  PubMed  Google Scholar 

  82. Smedema JP, van Paassen P, van Kroonenburgh MJ, Snoep G, Crijns HJ, Tervaert JW. Cardiac involvement of Churg Strauss syndrome demonstrated by magnetic resonance imaging. Clin Exp Rheumatol. 2004;22(6 Suppl 36):S75–8.

    CAS  PubMed  Google Scholar 

  83. Neumann T, Manger B, Schmid M, Kroegel C, Hansch A, Kaiser WA, et al. Cardiac involvement in Churg-Strauss syndrome: impact of endomyocarditis. Medicine (Baltimore). 2009;88(4):236–43.

    Google Scholar 

  84. Mavrogeni S, Tsirogianni AK, Gialafos EJ, Manoussakis MN. Detection of myocardial inflammation by contrast-enhanced MRI in a patient with Churg-Strauss syndrome. Int J Cardiol. 2009;131(2):e54–5.

    CAS  PubMed  Google Scholar 

  85. Vignaux O, Marmursztejn J, Cohen P, Bruguière E, Duboc D, Guillevin L, et al. Cardiac imaging in ANCA-associated vasculitis. Presse Med. 2007;36(5 Pt 2):902–6.

    PubMed  Google Scholar 

  86. Ohata S, Shimada T, Shimizu H, Murakami Y, Matsuno Y. Myocarditis associated with polymyositis diagnosed by gadolinium-DTPA enhanced magnetic resonance imaging. J Rheumatol. 2002;29:861–2.

    PubMed  Google Scholar 

  87. Allanore Y, Vignaux O, Arnaud L, Puéchal X, et al. Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy related myocarditis evaluated by magnetic resonance imaging. Ann Rheum Dis. 2006;65(2):249–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Been M, Thomson BJ, Smith MA, Ridgway JP, Douglas RH, Been M, et al. Myocardial involvement in systemic lupus erythematosus detected by magnetic resonance imaging. Eur Heart J. 1988;9(11):1250–6.

    CAS  PubMed  Google Scholar 

  89. Singh JA, Woodard PK, Dávila-Román VG, Waggoner AD, Gutierrez FR, Zheng J, et al. Cardiac magnetic resonance imaging abnormalities in systemic lupus erythematosus: a preliminary report. Lupus. 2005;14(2):137–44.

    CAS  PubMed  Google Scholar 

  90. Mavrogeni S, Manoussakis MN. Myocarditis and subclavian stenosis in Takayasu arteritis. Int J Cardiol. 2011;148(2):223–4.

    PubMed  Google Scholar 

  91. Kouranos V, Tzelepis GE, Rapti A, Mavrogeni S, Aggeli K, Douskou M, et al. Complementary role of CMR to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. JACC Cardiovasc Imaging. 2017;10(12):1437–47.

    PubMed  Google Scholar 

  92. Mavrogeni S, Karabela G, Gialafos E, Stavropoulos E, Spiliotis G, Katsifis G, et al. Cardiac involvement in ANCA (+) and ANCA (−) Churg-Strauss syndrome evaluated by cardiovascular magnetic resonance. Inflamm Allergy Drug Targets. 2013;12(5):322–7.

    CAS  PubMed  Google Scholar 

  93. Mavrogeni S, Sfikakis PP, Gialafos E, Karabela G, Stavropoulos E, Sfendouraki E, et al. Diffuse, subendocardial vasculitis. A new entity identified by cardiovascular magnetic resonance and its clinical implications. Int J Cardiol. 2013;168(3):2971–2.

    PubMed  Google Scholar 

  94. Mavrogeni S, Dimitroulas T, Chatziioannou SN, Kitas G. The role of multi-modality imaging in the evaluation of Takayasu arteritis. Semin Arthritis Rheum. 2013;42(4):401–12.

    PubMed  Google Scholar 

  95. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72(24):3158–76.

    PubMed  Google Scholar 

  96. Mavrogeni SI, Sfikakis PP, Markousis-Mavrogenis G, Bournia VK, Poulos G, Koutsogeorgopoulou L, et al. Cardiovascular magnetic resonance imaging pattern in patients with autoimmune rheumatic diseases and ventricular tachycardia with preserved ejection fraction. Int J Cardiol. 2019;284:105–9.

    PubMed  Google Scholar 

  97. Mavrogeni S, Schwitter J, van Rossum A, Nijveldt R, Aletras A, Kolovou G, et al. Cardiac magnetic resonance imaging in myocardial inflammation in autoimmune rheumatic diseases: an appraisal of the diagnostic strengths and limitations of the Lake Louise criteria. Int J Cardiol. 2018;252:216–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie I. Mavrogeni.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Imaging in Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markousis-Mavrogenis, G., Pepe, A., Gargani, L. et al. Myocardial Involvement in Rheumatic Disorders. Curr Heart Fail Rep 17, 171–180 (2020). https://doi.org/10.1007/s11897-020-00471-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00471-1

Keywords

Navigation