Skip to main content
Log in

The Effect of Left Ventricular Assist Device Therapy on Cardiac Biomarkers: Implications for the Identification of Myocardial Recovery

  • Biomarkers of Heart Failure (W Tang and J Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Left ventricular assist device (LVAD) therapy serves as mainstay therapy for bridge to transplantation and destination therapy. Evidence is now mounting on the role of LVAD therapy as bridge to recovery. In the current review, we will summarize the data on biomarkers of myocardial recovery following LVAD implantation.

Recent Findings

Myocardial recovery can occur spontaneously, following pharmacological intervention and in the setting of mechanical circulatory support such as LVAD. Several biomarkers such as B-type natriuretic peptide (BNP), N-terminal pro B-type natriuretic peptide (NT-proBNP), ST2, etc. have been identified and are being used to guide medical therapy in heart failure (HF) patients. However, recent data raised concern that those biomarkers may not be helpful in managing heart failure patients in general, and as such questioned their use in the advanced heart failure population. At this point, the use of biomarker to identify patients with myocardial recovery during LVAD support has not been established, and LVAD explantation remains a decision driven by echocardiographic and hemodynamics improvement.

Summary

HF biomarkers in monitoring myocardial and neurohormonal activation response to mechanical unloading and medical therapy could be valuable. However, at this time, there is inadequate evidence to select a single or a set of HF biomarkers to reliably identify patients bridged to recovery for LVAD explantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther. 2002;16(3):245–9.

    Article  PubMed  CAS  Google Scholar 

  2. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–38.

    Article  PubMed  Google Scholar 

  3. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669–77.

    Article  PubMed  CAS  Google Scholar 

  4. Konstam MA, Patten RD, Thomas I, Ramahi T, La Bresh K, Goldman S, et al. Effects of losartan and captopril on left ventricular volumes in elderly patients with heart failure: results of the ELITE ventricular function substudy. Am Heart J. 2000;139(6):1081–7.

    Article  PubMed  CAS  Google Scholar 

  5. Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, Kitaoka H, et al. Effect of left ventricular reverse remodeling on long-term prognosis after therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and beta blockers in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2011;107(7):1065–70.

    Article  PubMed  CAS  Google Scholar 

  6. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  PubMed  CAS  Google Scholar 

  7. Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56(5):382–91.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Farris SD, Don C, Helterline D, Costa C, Plummer T, Steffes S, et al. Cell-specific pathways supporting persistent fibrosis in heart failure. J Am Coll Cardiol. 2017;70(3):344–54.

    Article  PubMed  CAS  Google Scholar 

  9. Diakos NA, Selzman CH, Sachse FB, Stehlik J, Kfoury AG, Wever-Pinzon O, et al. Myocardial atrophy and chronic mechanical unloading of the failing human heart: implications for cardiac assist device-induced myocardial recovery. J Am Coll Cardiol. 2014;64(15):1602–12.

    Article  PubMed  Google Scholar 

  10. Diakos NA, Navankasattusas S, Abel ED, Rutter J, McCreath L, Ferrin P, et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl Sci. 2016;1(6):432–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Margulies KB, Matiwala S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failing and recovering human myocardium. Circ Res. 2005;96(5):592–9.

    Article  PubMed  CAS  Google Scholar 

  12. Drakos SG, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Terrovitis JV, et al. Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation. 2012;126(2):230–41.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Topkara VK, Garan AR, Fine B, Godier-Furnemont AF, Breskin A, Cagliostro B, Yuzefpolskaya M, Takeda K, Takayama H, Mancini DM, et al. Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Circ Heart Fail. 2016;9(7):e00315.

  14. Wever-Pinzon O, Drakos SG, McKellar SH, Horne BD, Caine WT, Kfoury AG, et al. Cardiac recovery during long-term left ventricular assist device support. J Am Coll Cardiol. 2016;68(14):1540–53.

    Article  PubMed  Google Scholar 

  15. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84.

    Article  PubMed  CAS  Google Scholar 

  16. Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, et al. Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation. 2011;123(4):381–90.

    Article  PubMed  CAS  Google Scholar 

  17. Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, et al. Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation. 2007;115(19):2497–505.

    Article  PubMed  Google Scholar 

  18. Drakos SG, Mehra MR. Clinical myocardial recovery during long-term mechanical support in advanced heart failure: insights into moving the field forward. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2016;35(4):413–20.

    Article  Google Scholar 

  19. Birks EJ REPS, et al. Poster S4026. REmission from Stage D Heart Failure (RESTAGE-HF): interim results and insights from a prospective multi-center non-randomized study of myocardial recovery using LVADs. Presented at: 2016 American Heart Association Scientific Sessions November 12–16, 2016; New Orleans, LA. 2016.

  20. Kim GH, Uriel N, Burkhoff D. Reverse remodelling and myocardial recovery in heart failure. Nat Rev Cardiol. 2017;15:83–96.

    Article  PubMed  CAS  Google Scholar 

  21. Basuray A, French B, Ky B, Vorovich E, Olt C, Sweitzer NK, et al. Heart failure with recovered ejection fraction: clinical description, biomarkers, and outcomes. Circulation. 2014;129(23):2380–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. de Groote P, Fertin M, Duva Pentiah A, Goeminne C, Lamblin N, Bauters C. Long-term functional and clinical follow-up of patients with heart failure with recovered left ventricular ejection fraction after beta-blocker therapy. Circ Heart Fail. 2014;7(3):434–9.

    Article  PubMed  CAS  Google Scholar 

  23. Uriel N, Kim G, Burkhoff D. Myocardial recovery after LVAD implantation: a vision or simply an illusion? J Am Coll Cardiol. 2017;70(3):355–7.

    Article  PubMed  Google Scholar 

  24. Ahmad T, Wang T, O'Brien EC, Samsky MD, Pura JA, Lokhnygina Y, et al. Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail. 2015;3(1):30–9.

    Article  PubMed  Google Scholar 

  25. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, et al. Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation. 2017;135(22):e1054–e91.

    Article  PubMed  CAS  Google Scholar 

  26. • Ouwerkerk W, Zwinderman AH, Ng LL, Demissei B, Hillege HL, Zannad F, et al. Biomarker-guided versus guideline-based treatment of patients with heart failure: results from BIOSTAT-CHF. J Am Coll Cardiol. 2018;71(4):386–98. This article points out a potential benefit of biomarker-guided up-titration of heart failure therapy

    Article  PubMed  Google Scholar 

  27. Ahmad T, Fiuzat M, Felker GM, O’Connor C. Novel biomarkers in chronic heart failure. Nat Rev Cardiol. 2012;9(6):347–59.

    Article  PubMed  CAS  Google Scholar 

  28. Ibrahim NE, Gaggin HK, Konstam MA, Januzzi JL Jr. Established and emerging roles of biomarkers in heart failure clinical trials. Circ Heart Fail. 2016;9(9):e002528.

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa O, Ogawa Y, Itoh H, Suga S, Komatsu Y, Kishimoto I, et al. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest. 1995;96(3):1280–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47(4):742–8.

    Article  PubMed  CAS  Google Scholar 

  31. Maisel AS, Krishnaswamy P, Nowak RM, McCord J, Hollander JE, Duc P, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161–7.

    Article  PubMed  CAS  Google Scholar 

  32. Januzzi JL Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, et al. The N-terminal pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95(8):948–54.

    Article  PubMed  CAS  Google Scholar 

  33. Januzzi JL Jr, Rehman SU, Mohammed AA, Bhardwaj A, Barajas L, Barajas J, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58(18):1881–9.

    Article  PubMed  CAS  Google Scholar 

  34. Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J, Santalo-Bel M, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J. 2006;27(3):330–7.

    Article  PubMed  CAS  Google Scholar 

  35. Januzzi JL Jr, Sakhuja R, O'Donoghue M, Baggish AL, Anwaruddin S, Chae CU, et al. Utility of amino-terminal pro-brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department. Arch Intern Med. 2006;166(3):315–20.

    Article  PubMed  CAS  Google Scholar 

  36. Masson S, Latini R, Anand IS, Barlera S, Angelici L, Vago T, et al. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol. 2008;52(12):997–1003.

    Article  PubMed  CAS  Google Scholar 

  37. Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N, et al. Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2017;318(8):713–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Milting H, A ELB, Kassner A, Fey O, Sarnowski P, Arusoglu L, et al. The time course of natriuretic hormones as plasma markers of myocardial recovery in heart transplant candidates during ventricular assist device support reveals differences among device types. J Heart Lung Transplant. 2001;20(9):949–55.

    Article  PubMed  CAS  Google Scholar 

  39. Bruggink AH, de Jonge N, van Oosterhout MF, Van Wichen DF, de Koning E, Lahpor JR, et al. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2006;25(2):174–80.

    Article  PubMed  Google Scholar 

  40. Halkar M, Tang WH. Incorporating common biomarkers into the clinical management of heart failure. Current heart failure reports. 2013;10(4):450–7.

    Article  PubMed  CAS  Google Scholar 

  41. Zilinski JL, Shah RV, Gaggin HK, Gantzer ML, Wang TJ, Januzzi JL. Measurement of multiple biomarkers in advanced stage heart failure patients treated with pulmonary artery catheter guided therapy. Crit Care. 2012;16(4):R135.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • Tseng CCH MM, Gaykema L, Chamuleau SA, de Jonge N. Soluble ST2 levels in end-stage heart failure and during LVAD support. J Heart Lung Transplant. 2016;35(4):S13. This article describes changes of ST2 following LVAD

    Article  Google Scholar 

  43. Milting H, Ellinghaus P, Seewald M, Cakar H, Bohms B, Kassner A, et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant. 2008;27(6):589–96.

    Article  PubMed  Google Scholar 

  44. Lok SI, Winkens B, Goldschmeding R, van Geffen AJ, Nous FM, van Kuik J, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012;14(11):1249–56.

    Article  PubMed  CAS  Google Scholar 

  45. Pronschinske KB, Qiu S, Wu C, Kato TS, Khawaja T, Takayama H, et al. Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(12):1215–22.

    Article  Google Scholar 

  46. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  PubMed  CAS  Google Scholar 

  47. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52(25):2166–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7.

    Article  PubMed  Google Scholar 

  50. Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL, et al. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. JACC Heart failure. 2017;5(4):280–6.

    Article  PubMed  Google Scholar 

  51. Lassus J, Gayat E, Mueller C, Peacock WF, Spinar J, Harjola VP, et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the Multinational Observational Cohort on Acute Heart Failure (MOCA) study. Int J Cardiol. 2013;168(3):2186–94.

    Article  PubMed  Google Scholar 

  52. van Vark LC, Lesman-Leegte I, Baart SJ, Postmus D, Pinto YM, Orsel JG, et al. Prognostic value of serial ST2 measurements in patients with acute heart failure. J Am Coll Cardiol. 2017;70(19):2378–88.

    Article  PubMed  CAS  Google Scholar 

  53. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51.

    Article  PubMed  Google Scholar 

  54. Bayes-Genis A, Nunez J, Lupon J. Soluble ST2 for prognosis and monitoring in heart failure: the new gold standard? J Am Coll Cardiol. 2017;70(19):2389–92.

    Article  PubMed  Google Scholar 

  55. Caselli C, D'Amico A, Ragusa R, Caruso R, Prescimone T, Cabiati M, et al. IL-33/ST2 pathway and classical cytokines in end-stage heart failure patients submitted to left ventricular assist device support: a paradoxic role for inflammatory mediators? Mediat Inflamm. 2013;2013:498703.

    Article  CAS  Google Scholar 

  56. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi JL Jr. Soluble concentrations of the interleukin receptor family member ST2 and beta-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–13.

    Article  PubMed  CAS  Google Scholar 

  57. Weir RA, Miller AM, Murphy GE, Clements S, Steedman T, Connell JM, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243–50.

    Article  PubMed  CAS  Google Scholar 

  58. van Kimmenade RR, Januzzi JL Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48(6):1217–24.

    Article  PubMed  CAS  Google Scholar 

  59. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8.

    Article  PubMed  CAS  Google Scholar 

  60. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 2013;15(10):1157–63.

    Article  PubMed  CAS  Google Scholar 

  61. Bayes-Genis A, de Antonio M, Vila J, Penafiel J, Galan A, Barallat J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 2014;63(2):158–66.

    Article  PubMed  CAS  Google Scholar 

  62. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(11):1054–60.

    Article  PubMed  CAS  Google Scholar 

  63. Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: relation to disease severity and prognosis in the Valsartan Heart Failure Trial. Circulation. 2010;122(14):1387–95.

    Article  PubMed  CAS  Google Scholar 

  64. Yanaba K, Asano Y, Tada Y, Sugaya M, Kadono T, Sato S. Clinical significance of serum growth differentiation factor-15 levels in systemic sclerosis: association with disease severity. Mod Rheumatol. 2012;22(5):668–75.

    Article  PubMed  CAS  Google Scholar 

  65. Masai T, Sawa Y, Ohtake S, Nishida T, Nishimura M, Fukushima N, et al. Hepatic dysfunction after left ventricular mechanical assist in patients with end-stage heart failure: role of inflammatory response and hepatic microcirculation. Ann Thorac Surg. 2002;73(2):549–55.

    Article  PubMed  Google Scholar 

  66. Grosman-Rimon L, McDonald MA, Jacobs I, Tumiati LC, Pollock Bar-Ziv S, Shogilev DJ, et al. Markers of inflammation in recipients of continuous-flow left ventricular assist devices. ASAIO J. 2014;60(6):657–63.

    Article  PubMed  CAS  Google Scholar 

  67. • Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK. Tumor necrosis factor-alpha levels and non-surgical bleeding in continuous-flow left ventricular assist devices. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2018;37(1):107–15. This article implies elevated TNF-alpha levels post-LVAD in non-surgical bleeding

    Article  Google Scholar 

  68. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268(14):10425–32.

    PubMed  CAS  Google Scholar 

  69. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. Journal of the American Society of Nephrology : JASN. 2003;14(10):2534–43.

    Article  PubMed  CAS  Google Scholar 

  70. Yndestad A, Landro L, Ueland T, Dahl CP, Flo TH, Vinge LE, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30(10):1229–36.

    Article  PubMed  CAS  Google Scholar 

  71. Damman K, Masson S, Hillege HL, Voors AA, van Veldhuisen DJ, Rossignol P, et al. Tubular damage and worsening renal function in chronic heart failure. JACC Heart failure. 2013;1(5):417–24.

    Article  PubMed  Google Scholar 

  72. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation along with B-type NaTriuretic peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. van Deursen VM, Damman K, Voors AA, van der Wal MH, Jaarsma T, van Veldhuisen DJ, et al. Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure. Circ Heart Fail. 2014;7(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  74. Lund LH, Gabrielsen A. Biomarkers in advanced heart failure—pathophysiology leading to clinical use? The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2014;33(12):1213–4.

    Article  Google Scholar 

  75. Wang T, O'Brien EC, Rogers JG, Jacoby DL, Chen ME, Testani JM, et al. Plasma levels of microRNA-155 are upregulated with long-term left ventricular assist device support. ASAIO J. 2017;63(5):536–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Akat KM, Mooremgriff D, Morozov P, Brown M, Gogakos T, Correa Da Rosa J, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A. 2014;111(30):11151–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Patel SR, Saeed O, Murthy S, Bhatia V, Shin JJ, Wang D, et al. Combining neurohormonal blockade with continuous-flow left ventricular assist device support for myocardial recovery: a single-arm prospective study. J Heart Lung Transplant. 2013;32(3):305–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Uriel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzhauser, L., Kim, G., Sayer, G. et al. The Effect of Left Ventricular Assist Device Therapy on Cardiac Biomarkers: Implications for the Identification of Myocardial Recovery. Curr Heart Fail Rep 15, 250–259 (2018). https://doi.org/10.1007/s11897-018-0399-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-018-0399-3

Keywords

Navigation