Skip to main content

Advertisement

Log in

Clinical Phenotyping of Heart Failure with Biomarkers: Current and Future Perspectives

  • Biomarkers of Heart Failure (W H W Tang and J Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Introduction

Heart failure (HF) is a complex clinical syndrome with diverse risk factors and etiologies, differing underlying pathophysiology, and large phenotypic heterogeneity.

Recent Findings

Advances in imaging techniques coupled with clinical trials that targeted only in those with impaired left ventricular ejection fraction (LVEF) have largely shaped the current management strategy for HF that focuses predominantly in patients with systolic HF. In contrast, there are no effective treatments for HF with preserved ejection fraction (HFpEF). Instead of this “one-size-fits-all” approach to treatment, better precision to define HF phenotypic classifications may lead to more efficient and effective HF disease management.

Conclusion

Integrating variables—including clinical variables, HF biomarkers, imaging, genotypes, metabolomics, and proteomics—can identify different pathophysiologies, lead to more precise phenotypic classification, and warrant investigation in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.

    Article  PubMed  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52.

    Article  PubMed  Google Scholar 

  3. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  PubMed  Google Scholar 

  4. Swedberg K, Komajda M, Bohm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376(9744):875–85.

    Article  CAS  PubMed  Google Scholar 

  5. Braunwald E. Heart failure. JACC Heart Fail. 2013;1(1):1–20.

    Article  PubMed  Google Scholar 

  6. Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Januzzi Jr JL, Felker GM. Surfing the biomarker tsunami at JACC: heart failure. JACC Heart Fail. 2013;1(3):213–5.

    Article  PubMed  Google Scholar 

  8. Ahmad T, Fiuzat M, Pencina MJ, et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2014;2(5):477–88.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eurlings LW, van Pol PE, Kok WE, et al. Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (can PRo-brain-natriuretic peptide guided therapy of chronic heart failure improve heart failure morbidity and mortality?) study. J Am Coll Cardiol. 2010;56(25):2090–100.

    Article  CAS  PubMed  Google Scholar 

  10. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009;301(4):383–92.

    Article  CAS  PubMed  Google Scholar 

  11. Berger R, Moertl D, Peter S, et al. N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol. 2010;55(7):645–53.

    Article  CAS  PubMed  Google Scholar 

  12. Jourdain P, Jondeau G, Funck F, et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP multicenter study. J Am Coll Cardiol. 2007;49(16):1733–9.

    Article  CAS  PubMed  Google Scholar 

  13. Persson H, Erntell H, Eriksson B, Johansson G, Swedberg K, Dahlstrom U. Improved pharmacological therapy of chronic heart failure in primary care: a randomized study of NT-proBNP Guided Management of Heart Failure—SIGNAL-HF (Swedish Intervention study—Guidelines and NT-proBNP Analysis in Heart Failure). Eur J Heart Fail. 2010;12(12):1300–8.

    Article  CAS  PubMed  Google Scholar 

  14. Januzzi Jr JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58(18):1881–9.

    Article  CAS  PubMed  Google Scholar 

  15. Porapakkham P, Porapakkham P, Zimmet H, Billah B, Krum H. B-type natriuretic peptide-guided heart failure therapy: a meta-analysis. Arch Intern Med. 2010;170(6):507–14.

    Article  CAS  PubMed  Google Scholar 

  16. Januzzi Jr JL. The role of natriuretic peptide testing in guiding chronic heart failure management: review of available data and recommendations for use. Arch Cardiovasc Dis. 2012;105(1):40–50.

    Article  PubMed  Google Scholar 

  17. •• Felker GM, Ahmad T, Anstrom KJ, et al. Rationale and design of the GUIDE-IT study: guiding evidence based therapy using biomarker intensified treatment in heart failure. JACC Heart Fail. 2014;2(5):457–65. An important validation study for the use of natriuretic peptide testing to guide therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6.

    Article  PubMed  Google Scholar 

  19. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weinberg EO, Shimpo M, De Keulenaer GW, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seki K, Sanada S, Kudinova AY, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2(6):684–91.

    Article  CAS  PubMed  Google Scholar 

  22. Ky B, French B, McCloskey K, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7.

    Article  PubMed  Google Scholar 

  23. Bayes-Genis A, de Antonio M, Vila J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 2014;63(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  24. Wang YC, Yu CC, Chiu FC, et al. Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Card Fail. 2013;19(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gaggin HK, Szymonifka J, Bhardwaj A, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2(1):65–72.

    Article  PubMed  Google Scholar 

  26. Manzano-Fernandez S, Januzzi JL, Pastor-Perez FJ, et al. Serial monitoring of soluble interleukin family member ST2 in patients with acutely decompensated heart failure. Cardiology. 2012;122(3):158–66.

    Article  CAS  PubMed  Google Scholar 

  27. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi Jr JL. Soluble concentrations of the interleukin receptor family member ST2 and beta-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–13.

    Article  CAS  PubMed  Google Scholar 

  28. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure trial. Circ Heart Fail. 2014;7(3):418–26.

    Article  CAS  PubMed  Google Scholar 

  29. Maisel A, Xue Y, van Veldhuisen DJ, et al. Effect of spironolactone on 30-day death and heart failure rehospitalization (from the COACH study). Am J Cardiol. 2014;114(5):737–42.

    Article  CAS  PubMed  Google Scholar 

  30. Januzzi Jr JL, Peacock WF, Maisel AS, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–13.

    Article  CAS  PubMed  Google Scholar 

  31. Tang WH, Wu Y, Grodin JL, et al. Prognostic value of baseline and changes in circulating soluble ST2 levels and the effects of nesiritide in acute decompensated heart failure. JACC Heart Fail. 2016;4(1):68–77.

    Article  PubMed  Google Scholar 

  32. Xue Y, Clopton P, Peacock WF, Maisel AS. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur J Heart Fail. 2011;13(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  33. de Boer RA, Daniels LB, Maisel AS, Januzzi Jr JL. State of the art: newer biomarkers in heart failure. Eur J Heart Fail. 2015;17(6):559–69.

    Article  PubMed  Google Scholar 

  34. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.

    Article  PubMed  Google Scholar 

  35. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Ruifrok WP, Meissner M, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  37. de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8.

    Article  PubMed  Google Scholar 

  38. Edelmann F, Holzendorf V, Wachter R, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015;17(2):214–23.

    Article  CAS  PubMed  Google Scholar 

  39. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12(8):826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calvier L, Miana M, Reboul P, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  41. Gandhi PU, Motiwala SR, Belcher AM, et al. Galectin-3 and mineralocorticoid receptor antagonist use in patients with chronic heart failure due to left ventricular systolic dysfunction. Am Heart J. 2015;169(3):404–411.e403.

    Article  CAS  PubMed  Google Scholar 

  42. Gullestad L, Ueland T, Kjekshus J, et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33(18):2290–6.

    Article  CAS  PubMed  Google Scholar 

  43. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15(5):511–8.

    Article  CAS  PubMed  Google Scholar 

  44. AbouEzzeddine OF, Haines P, Stevens S, et al. Galectin-3 in heart failure with preserved ejection fraction. A RELAX trial substudy (phosphodiesterase-5 inhibition to improve clinical status and exercise capacity in diastolic heart failure). JACC Heart Fail. 2015;3(3):245–52.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gopal DM, Kommineni M, Ayalon N, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc. 2012;1(5):e000760.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang WH, Shrestha K, Shao Z, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108(3):385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shlipak MG, Matsushita K, Arnlov J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brisco MA, Testani JM. Novel renal biomarkers to assess cardiorenal syndrome. Curr Heart Fail Rep. 2014;11(4):485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang WH, Dupont M, Hernandez AF, et al. Comparative assessment of short-term adverse events in acute heart failure with cystatin C and other estimates of renal function: results from the ASCEND-HF trial. JACC Heart Fail. 2015;3(1):40–9.

    Article  PubMed  Google Scholar 

  51. Dupont M, Shrestha K, Singh D, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail. 2012;14(6):597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  53. Shrestha K, Shao Z, Singh D, Dupont M, Tang WH. Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. Am J Cardiol. 2012;110(9):1329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Damman K, Masson S, Hillege HL, et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J. 2011;32(21):2705–12.

    Article  CAS  PubMed  Google Scholar 

  55. Damman K, Van Veldhuisen DJ, Navis G, et al. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart. 2010;96(16):1297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emmens JE, Ter Maaten JM, Matsue Y, et al. Plasma kidney injury molecule-1 in heart failure: renal mechanisms and clinical outcome. Eur J Heart Fail. 2016;18(6):641–9.

    Article  CAS  PubMed  Google Scholar 

  57. Grodin JL, Perez AL, Wu Y, et al. Circulating kidney injury molecule-1 levels in acute heart failure: insights from the ASCEND-HF trial (acute study of clinical effectiveness of nesiritide in decompensated heart failure). JACC Heart Fail. 2015;3(10):777–85.

    Article  PubMed  Google Scholar 

  58. Ky B, French B, Levy WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5(2):183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang TJ, Wollert KC, Larson MG, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012;126(13):1596–604.

    Article  CAS  PubMed  Google Scholar 

  60. Sanders-van Wijk S, van Empel V, Davarzani N, et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail. 2015;17(10):1006–14.

    Article  CAS  PubMed  Google Scholar 

  61. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364(17):1643–56.

    Article  CAS  PubMed  Google Scholar 

  62. Oni-Orisan A, Lanfear DE. Pharmacogenomics in heart failure: where are we now and how can we reach clinical application? Cardiol Rev. 2014;22(5):193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Smith JG, Felix JF, Morrison AC, et al. Discovery of genetic variation on chromosome 5q22 associated with mortality in heart failure. PLoS Genet. 2016;12(5):e1006034.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Perez MV, Pavlovic A, Shang C, et al. Systems genomics identifies a key role for hypocretin/orexin receptor-2 in human heart failure. J Am Coll Cardiol. 2015;66(22):2522–33.

    Article  CAS  PubMed  Google Scholar 

  65. Meder B, Ruhle F, Weis T, et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J. 2014;35(16):1069–77.

    Article  CAS  PubMed  Google Scholar 

  66. Villard E, Perret C, Gary F, et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J. 2011;32(9):1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cappola TP, Matkovich SJ, Wang W, et al. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc Natl Acad Sci U S A. 2011;108(6):2456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010;121(8):1022–32.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liebetrau C, Mollmann H, Dorr O, et al. Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol. 2013;62(11):992–8.

    Article  CAS  PubMed  Google Scholar 

  70. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66.

    Article  PubMed  Google Scholar 

  71. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106(6):1035–9.

    Article  CAS  PubMed  Google Scholar 

  72. Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail. 2015;17(4):393–404.

    Article  CAS  PubMed  Google Scholar 

  73. Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113(3):322–6.

    Article  CAS  PubMed  Google Scholar 

  74. Gurha P, Abreu-Goodger C, Wang T, et al. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation. 2012;125(22):2751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Senn T, Hazen SL, Tang WH. Translating metabolomics to cardiovascular biomarkers. Prog Cardiovasc Dis. 2012;55(1):70–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang TJ, Gupta DK. Metabolite profiles in heart failure: looking for unique signatures in a heterogeneous syndrome. J Am Coll Cardiol. 2015;65(15):1521–4.

    Article  PubMed  Google Scholar 

  78. Cheng ML, Wang CH, Shiao MS, et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am Coll Cardiol. 2015;65(15):1509–20.

    Article  CAS  PubMed  Google Scholar 

  79. Tang WH, Wang Z, Shrestha K, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015;21(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  80. Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.

    Article  CAS  PubMed  Google Scholar 

  81. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64(13):1388–400.

    Article  PubMed  Google Scholar 

  82. Tunon J, Martin-Ventura JL, Blanco-Colio LM, Lorenzo O, Lopez JA, Egido J. Proteomic strategies in the search of new biomarkers in atherothrombosis. J Am Coll Cardiol. 2010;55(19):2009–16.

    Article  CAS  PubMed  Google Scholar 

  83. Gregorich ZR, Chang YH, Ge Y. Proteomics in heart failure: top-down or bottom-up? Pflugers Arch. 2014;466(6):1199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79.

    Article  PubMed  Google Scholar 

  85. Ahmad T, Pencina MJ, Schulte PJ, et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64(17):1765–74.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kao DP, Lewsey JD, Anand IS, et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail. 2015;17(9):925–35.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shah AM, Solomon SD. Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. Eur Heart J. 2012;33(14):1716–7.

    Article  PubMed  Google Scholar 

  88. Shah DJ, Kim HW, James O, et al. Prevalence of regional myocardial thinning and relationship with myocardial scarring in patients with coronary artery disease. JAMA. 2013;309(9):909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klem I, Weinsaft JW, Bahnson TD, et al. Assessment of myocardial scarring improves risk stratification in patients evaluated for cardiac defibrillator implantation. J Am Coll Cardiol. 2012;60(5):408–20.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013;310(1):66–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Vichai Senthong and Jennifer L. Kirsop declare that they have no conflict of interest.

W.H. Wilson Tang has received grants from the National Institutes of Health (R01HL103931, P20HL113452, R01DK106000, R01HL126827) outside of the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthong, V., Kirsop, J.L. & Tang, W.H.W. Clinical Phenotyping of Heart Failure with Biomarkers: Current and Future Perspectives. Curr Heart Fail Rep 14, 106–116 (2017). https://doi.org/10.1007/s11897-017-0321-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0321-4

Keywords

Navigation