Skip to main content
Log in

Biomarkers to Predict Reverse Remodeling and Myocardial Recovery in Heart Failure

  • Biomarkers of Heart Failure (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Left ventricular remodeling appears to be a critical link between cardiac injury and the development and progression of heart failure with reduced ejection fraction (HFrEF). Several drug and device therapies that modify and reverse the remodeling process in patients with HFrEF are closely associated with improvement in clinical outcomes. Reverse remodeling, including partial or complete recovery of systolic function and structure, is possible but its determinants are incompletely understood. Methods to predict reverse remodeling in response to therapy are not well defined. Though non-invasive imaging techniques remain the most widely used methods of assessing reverse remodeling, serum biomarkers are now being investigated as more specific, mechanistically driven, and clinically useful predictors of reverse remodeling. Biomarkers that reflect myocyte stretch and stress, myocyte injury and necrosis, inflammation and fibrosis, and extracellular matrix turnover may be particularly valuable for predicting pathophysiologic changes and prognosis in individual patients. Their use may ultimately allow improved application of precision medicine in chronic HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi:10.1161/CIR.0000000000000350.

    Article  PubMed  Google Scholar 

  2. Udelson JE, Konstam MA. Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction. J Card Fail. 2002;8(6 Suppl):S465–71. doi:10.1054/jcaf.2002.129289.

    Article  PubMed  Google Scholar 

  3. Goldfinger JZ, Nair AP. Myocardial recovery and the failing heart: medical, device and mechanical methods. Ann Glob Health. 2014;80(1):55–60. doi:10.1016/j.aogh.2013.12.006.

    Article  PubMed  Google Scholar 

  4. Mancini GB, Howlett JG, Borer J, Liu PP, Mehra MR, Pfeffer M, et al. Pharmacologic options for the management of systolic heart failure: examining underlying mechanisms. Can J Cardiol. 2015;31(10):1282–92. doi:10.1016/j.cjca.2015.02.013.

    Article  PubMed  Google Scholar 

  5. Punnoose LR, Givertz MM, Lewis EF, Pratibhu P, Stevenson LW, Desai AS. Heart failure with recovered ejection fraction: a distinct clinical entity. J Card Fail. 2011;17(7):527–32. doi:10.1016/j.cardfail.2011.03.005.

    Article  PubMed  Google Scholar 

  6. Basuray A, French B, Ky B, Vorovich E, Olt C, Sweitzer NK, et al. Heart failure with recovered ejection fraction: clinical description, biomarkers, and outcomes. Circulation. 2014;129(23):2380–7. doi:10.1161/CIRCULATIONAHA.113.006855.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol. 2012;60(24):2465–72. doi:10.1016/j.jacc.2012.06.062.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mann DL, Burkhoff D. Is myocardial recovery possible and how do you measure it? Curr Cardiol Rep. 2012;14(3):293–8. doi:10.1007/s11886-012-0264-z.

    Article  PubMed  Google Scholar 

  9. Konstam MA. Reliability of ventricular remodeling as a surrogate for use in conjunction with clinical outcomes in heart failure. Am J Cardiol. 2005;96(6):867–71. doi:10.1016/j.amjcard.2005.05.037.

    Article  PubMed  Google Scholar 

  10. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. J Am Coll Cardiol Img. 2011;4(1):98–108. doi:10.1016/j.jcmg.2010.10.008.

    Article  Google Scholar 

  11. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  12. Lupon J, Gaggin HK, de Antonio M, Domingo M, Galan A, Zamora E, et al. Biomarker-assist score for reverse remodeling prediction in heart failure: the ST2-R2 score. Int J Cardiol. 2015;184:337–43. doi:10.1016/j.ijcard.2015.02.019.

    Article  PubMed  Google Scholar 

  13. Mulvagh SL, DeMaria AN, Feinstein SB, Burns PN, Kaul S, Miller JG, et al. Contrast echocardiography: current and future applications. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2000;13(4):331–42.

    Article  CAS  Google Scholar 

  14. Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol. 2004;44(4):878–86. doi:10.1016/j.jacc.2004.05.050.

    Article  PubMed  Google Scholar 

  15. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53. doi:10.1056/NEJM200011163432003.

    Article  CAS  PubMed  Google Scholar 

  16. Heil B, Tang WH. Biomarkers: their potential in the diagnosis and treatment of heart failure. Cleve Clin J Med. 2015;82(12 Suppl 2):S28–35. doi:10.3949/ccjm.82.s2.05.

    PubMed  Google Scholar 

  17. Writing Committee M, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327. doi:10.1161/CIR.0b013e31829e8776.

    Article  Google Scholar 

  18. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847. doi:10.1093/eurheartj/ehs104.

    Article  PubMed  Google Scholar 

  19. Moe GW, Ezekowitz JA, O’Meara E, Lepage S, Howlett JG, Fremes S, et al. The 2014 Canadian Cardiovascular Society heart failure management guidelines focus update: anemia, biomarkers, and recent therapeutic trial implications. Can J Cardiol. 2015;31(1):3–16. doi:10.1016/j.cjca.2014.10.022.

    Article  PubMed  Google Scholar 

  20. Motiwala SR, Januzzi Jr JL. The role of natriuretic peptides as biomarkers for guiding the management of chronic heart failure. Clin Pharmacol Ther. 2013;93(1):57–67. doi:10.1038/clpt.2012.187.

    Article  CAS  PubMed  Google Scholar 

  21. Masson S, Latini R, Anand IS, Barlera S, Angelici L, Vago T, et al. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol. 2008;52(12):997–1003. doi:10.1016/j.jacc.2008.04.069.

    Article  CAS  PubMed  Google Scholar 

  22. Weiner RB, Baggish AL, Chen-Tournoux A, Marshall JE, Gaggin HK, Bhardwaj A, et al. Improvement in structural and functional echocardiographic parameters during chronic heart failure therapy guided by natriuretic peptides: mechanistic insights from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) study. Eur J Heart Fail. 2013;15(3):342–51. doi:10.1093/eurjhf/hfs180.

    Article  CAS  PubMed  Google Scholar 

  23. Gaggin HK, Truong QA, Rehman SU, Mohammed AA, Bhardwaj A, Parks KA, et al. Characterization and prediction of natriuretic peptide “nonresponse” during heart failure management: results from the ProBNP Outpatient Tailored Chronic Heart Failure (PROTECT) and the NT-proBNP-Assisted Treatment to Lessen Serial Cardiac Readmissions and Death (BATTLESCARRED) study. Congest Heart Fail. 2013;19(3):135–42. doi:10.1111/chf.12016.

    Article  PubMed  Google Scholar 

  24. Krittayaphong R, Boonyasirinant T, Saiviroonporn P, Thanapiboonpol P, Nakyen S, Udompunturak S. Correlation between NT-pro BNP levels and left ventricular wall stress, sphericity index and extent of myocardial damage: a magnetic resonance imaging study. J Card Fail. 2008;14(8):687–94. doi:10.1016/j.cardfail.2008.05.002.

    Article  CAS  PubMed  Google Scholar 

  25. Krittayaphong R, Boonyasirinant T, Saiviroonporn P, Udompunturak S. NT-proBNP levels in the evaluation of right ventricular dysfunction in patients with coronary artery disease and abnormal left ventricular wall motion: a magnetic resonance imaging study. Coron Artery Dis. 2008;19(7):481–7. doi:10.1097/MCA.0b013e32830b4d0e.

    Article  PubMed  Google Scholar 

  26. Fruhwald FM, Fahrleitner-Pammer A, Berger R, Leyva F, Freemantle N, Erdmann E, et al. Early and sustained effects of cardiac resynchronization therapy on N-terminal pro-B-type natriuretic peptide in patients with moderate to severe heart failure and cardiac dyssynchrony. Eur Heart J. 2007;28(13):1592–7. doi:10.1093/eurheartj/ehl505.

    Article  CAS  PubMed  Google Scholar 

  27. Januzzi Jr JL, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: on behalf of the third universal definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur Heart J. 2012;33(18):2265–71. doi:10.1093/eurheartj/ehs191.

    Article  CAS  PubMed  Google Scholar 

  28. Hudson MP, O’Connor CM, Gattis WA, Tasissa G, Hasselblad V, Holleman CM, et al. Implications of elevated cardiac troponin T in ambulatory patients with heart failure: a prospective analysis. Am Heart J. 2004;147(3):546–52. doi:10.1016/j.ahj.2003.10.014.

    Article  CAS  PubMed  Google Scholar 

  29. Sato Y, Yamada T, Taniguchi R, Nagai K, Makiyama T, Okada H, et al. Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation. 2001;103(3):369–74.

    Article  CAS  PubMed  Google Scholar 

  30. Horwich TB, Patel J, MacLellan WR, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108(7):833–8. doi:10.1161/01.CIR.0000084543.79097.34.

    Article  CAS  PubMed  Google Scholar 

  31. Setsuta K, Seino Y, Takahashi N, Ogawa T, Sasaki K, Harada A, et al. Clinical significance of elevated levels of cardiac troponin T in patients with chronic heart failure. Am J Cardiol. 1999;84(5):608–11. A9.

    Article  CAS  PubMed  Google Scholar 

  32. Motiwala SR, Gaggin HK, Gandhi PU, Belcher A, Weiner RB, Baggish AL, et al. Concentrations of highly sensitive cardiac troponin-I predict poor cardiovascular outcomes and adverse remodeling in chronic heart failure. J Cardiovasc Transl Res. 2015;8(3):164–72. doi:10.1007/s12265-015-9618-4.

    Article  PubMed  Google Scholar 

  33. Chia S, Senatore F, Raffel OC, Lee H, Wackers FJ, Jang IK. Utility of cardiac biomarkers in predicting infarct size, left ventricular function, and clinical outcome after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. J Am Coll Cardiol Intv. 2008;1(4):415–23. doi:10.1016/j.jcin.2008.04.010.

    Article  Google Scholar 

  34. Oh PC, Choi IS, Ahn T, Moon J, Park Y, Seo JG, et al. Predictors of recovery of left ventricular systolic dysfunction after acute myocardial infarction: from the korean acute myocardial infarction registry and korean myocardial infarction registry. Korean Circ J. 2013;43(8):527–33. doi:10.4070/kcj.2013.43.8.527.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brooks GC, Lee BK, Rao R, Lin F, Morin DP, Zweibel SL, et al. Predicting persistent left ventricular dysfunction following myocardial infarction: the PREDICTS study. J Am Coll Cardiol. 2016;67(10):1186–96. doi:10.1016/j.jacc.2015.12.042.

    Article  PubMed  Google Scholar 

  36. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B, et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol. 2008;52(25):2166–74. doi:10.1016/j.jacc.2008.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538–49. doi:10.1172/JCI30634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2(6):684–91. doi:10.1161/CIRCHEARTFAILURE.109.873240.

    Article  CAS  PubMed  Google Scholar 

  40. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107(5):721–6.

    Article  PubMed  Google Scholar 

  41. Pascual-Figal DA, Ordonez-Llanos J, Tornel PL, Vazquez R, Puig T, Valdes M, et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol. 2009;54(23):2174–9. doi:10.1016/j.jacc.2009.07.041.

    Article  CAS  PubMed  Google Scholar 

  42. Bayes-Genis A, Pascual-Figal D, Januzzi JL, Maisel A, Casas T, Valdes Chavarri M, et al. Soluble ST2 monitoring provides additional risk stratification for outpatients with decompensated heart failure. Rev Esp Cardiol. 2010;63(10):1171–8.

    Article  PubMed  Google Scholar 

  43. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7. doi:10.1161/CIRCHEARTFAILURE.110.958223.

    Article  PubMed  Google Scholar 

  44. Broch K, Ueland T, Nymo SH, Kjekshus J, Hulthe J, Muntendam P, et al. Soluble ST2 is associated with adverse outcome in patients with heart failure of ischaemic aetiology. Eur J Heart Fail. 2012;14(3):268–77. doi:10.1093/eurjhf/hfs006.

    Article  CAS  PubMed  Google Scholar 

  45. Bayes-Genis A, de Antonio M, Galan A, Sanz H, Urrutia A, Cabanes R, et al. Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Fail. 2012;14(1):32–8. doi:10.1093/eurjhf/hfr156.

    Article  CAS  PubMed  Google Scholar 

  46. Bayes-Genis A, de Antonio M, Vila J, Penafiel J, Galan A, Barallat J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 2014;63(2):158–66. doi:10.1016/j.jacc.2013.07.087.

    Article  CAS  PubMed  Google Scholar 

  47. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ Heart Fail. 2009;2(4):311–9. doi:10.1161/CIRCHEARTFAILURE.108.833707.

    Article  CAS  PubMed  Google Scholar 

  48. Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160(4):721–8. doi:10.1016/j.ahj.2010.06.033.

    Article  CAS  PubMed  Google Scholar 

  49. Weir RA, Miller AM, Murphy GE, Clements S, Steedman T, Connell JM, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243–50. doi:10.1016/j.jacc.2009.08.047.

    Article  CAS  PubMed  Google Scholar 

  50. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi Jr JL. Soluble concentrations of the interleukin receptor family member ST2 and beta-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–13. doi:10.1161/CIRCHEARTFAILURE.113.000457.

    Article  CAS  PubMed  Google Scholar 

  51. Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and Highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2(1):65–72. doi:10.1016/j.jchf.2013.10.005.

    Article  PubMed  Google Scholar 

  52. Lupon J, Sanders-van Wijk S, Januzzi JL, de Antonio M, Gaggin HK, Pfisterer M, et al. Prediction of survival and magnitude of reverse remodeling using the ST2-R2 score in heart failure: a multicenter study. Int J Cardiol. 2016;204:242–7. doi:10.1016/j.ijcard.2015.11.163.

    Article  PubMed  Google Scholar 

  53. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8. doi:10.1161/01.CIR.0000147181.65298.4D.

    Article  CAS  PubMed  Google Scholar 

  54. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33(1):67–75. doi:10.1161/ATVBAHA.112.300569.

    Article  CAS  PubMed  Google Scholar 

  55. Azibani F, Benard L, Schlossarek S, Merval R, Tournoux F, Fazal L, et al. Aldosterone inhibits antifibrotic factors in mouse hypertensive heart. Hypertension. 2012;59(6):1179–87. doi:10.1161/HYPERTENSIONAHA.111.190512.

    Article  CAS  PubMed  Google Scholar 

  56. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6(1):107–17. doi:10.1161/CIRCHEARTFAILURE.112.971168.

    Article  CAS  PubMed  Google Scholar 

  57. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6(2):219–26. doi:10.1161/CIRCHEARTFAILURE.112.000129.

    Article  PubMed  Google Scholar 

  58. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15(5):511–8. doi:10.1093/eurjhf/hfs205.

    Article  CAS  PubMed  Google Scholar 

  59. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, et al. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol: Off J Ger Card Soc. 2010;99(5):323–8. doi:10.1007/s00392-010-0125-y.

    Article  CAS  Google Scholar 

  60. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 2013;15(10):1157–63. doi:10.1093/eurjhf/hft075.

    Article  CAS  PubMed  Google Scholar 

  61. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8. doi:10.3109/07853890.2010.538080.

    Article  PubMed  Google Scholar 

  62. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. The predictive value of galectin-3 for mortality and cardiovascular events in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Am Heart J. 2012;164(6):878–83. doi:10.1016/j.ahj.2012.08.021.

    Article  CAS  PubMed  Google Scholar 

  63. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5(1):72–8. doi:10.1161/CIRCHEARTFAILURE.111.963637.

    Article  CAS  PubMed  Google Scholar 

  64. Lok DJ, Lok SI, Bruggink-Andre de la Porte PW, Badings E, Lipsic E, van Wijngaarden J, et al. Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol: Off J Ger Card Soc. 2013;102(2):103–10. doi:10.1007/s00392-012-0500-y.

    Article  CAS  Google Scholar 

  65. Tang WH, Shrestha K, Shao Z, Borowski AG, Troughton RW, Thomas JD, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108(3):385–90. doi:10.1016/j.amjcard.2011.03.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Weir RA, Petrie CJ, Murphy CA, Clements S, Steedman T, Miller AM, et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Fail. 2013;6(3):492–8. doi:10.1161/CIRCHEARTFAILURE.112.000146.

    Article  CAS  PubMed  Google Scholar 

  67. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, et al. Galectin-3 predicts response to statin therapy in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Eur Heart J. 2012;33(18):2290–6. doi:10.1093/eurheartj/ehs077.

    Article  CAS  PubMed  Google Scholar 

  68. Fiuzat M, Schulte PJ, Felker M, Ahmad T, Neely M, Adams KF, et al. Relationship between galectin-3 levels and mineralocorticoid receptor antagonist use in heart failure: analysis from HF-ACTION. J Card Fail. 2014;20(1):38–44. doi:10.1016/j.cardfail.2013.11.011.

    Article  CAS  PubMed  Google Scholar 

  69. Gandhi PU, Motiwala SR, Belcher AM, Gaggin HK, Weiner RB, Baggish AL, et al. Galectin-3 and mineralocorticoid receptor antagonist use in patients with chronic heart failure due to left ventricular systolic dysfunction. Am Heart J. 2015;169(3):404–11. doi:10.1016/j.ahj.2014.12.012. e3.

    Article  CAS  PubMed  Google Scholar 

  70. Stolen CM, Adourian A, Meyer TE, Stein KM, Solomon SD. Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail. 2014;20(11):793–9. doi:10.1016/j.cardfail.2014.07.018.

    Article  CAS  PubMed  Google Scholar 

  71. Lopez-Andres N, Rossignol P, Iraqi W, Fay R, Nuee J, Ghio S, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail. 2012;14(1):74–81. doi:10.1093/eurjhf/hfr151.

    Article  CAS  PubMed  Google Scholar 

  72. Milting H, Ellinghaus P, Seewald M, Cakar H, Bohms B, Kassner A, et al. Plasma biomarkers of myocardial fibrosis and remodeling in terminal heart failure patients supported by mechanical circulatory support devices. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2008;27(6):589–96. doi:10.1016/j.healun.2008.02.018.

    Article  Google Scholar 

  73. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: the fibroblast awakens. Circ Res. 2016;118(6):1021–40. doi:10.1161/CIRCRESAHA.115.306565.

    Article  CAS  PubMed  Google Scholar 

  74. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology. 2013;28(6):391–403. doi:10.1152/physiol.00029.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley 3rd AJ, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97(17):1708–15.

    Article  CAS  PubMed  Google Scholar 

  76. Coker ML, Thomas CV, Clair MJ, Hendrick JW, Krombach RS, Galis ZS, et al. Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Phys. 1998;274(5 Pt 2):H1516–23.

    CAS  Google Scholar 

  77. Polyakova V, Loeffler I, Hein S, Miyagawa S, Piotrowska I, Dammer S, et al. Fibrosis in endstage human heart failure: severe changes in collagen metabolism and MMP/TIMP profiles. Int J Cardiol. 2011;151(1):18–33. doi:10.1016/j.ijcard.2010.04.053.

    Article  PubMed  Google Scholar 

  78. Sundstrom J, Evans JC, Benjamin EJ, Levy D, Larson MG, Sawyer DB, et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures: the Framingham Heart Study. Circulation. 2004;109(23):2850–6. doi:10.1161/01.CIR.0000129318.79570.84.

    Article  PubMed  Google Scholar 

  79. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106(1):55–62. doi:10.1172/JCI8768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, et al. Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Phys Heart Circ Phys. 2006;290(1):H232–9. doi:10.1152/ajpheart.00457.2005.

    CAS  Google Scholar 

  81. Zamilpa R, Ibarra J, de Castro Bras LE, Ramirez TA, Nguyen N, Halade GV, et al. Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J Mol Cell Cardiol. 2012;53(5):599–608. doi:10.1016/j.yjmcc.2012.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li SW, Sieron AL, Fertala A, Hojima Y, Arnold WV, Prockop DJ. The C-proteinase that processes procollagens to fibrillar collagens is identical to the protein previously identified as bone morphogenic protein-1. Proc Natl Acad Sci U S A. 1996;93(10):5127–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS. Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science. 1996;271(5247):360–2.

    Article  CAS  PubMed  Google Scholar 

  84. Vadon-Le Goff S, Hulmes DJ, Moali C. BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol J Int Soc Matrix Biol. 2015;44–46:14–23. doi:10.1016/j.matbio.2015.02.006.

    Article  Google Scholar 

  85. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, et al. Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2009;11(1):46–55. doi:10.1038/ncb1811.

    Article  CAS  PubMed  Google Scholar 

  86. He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L, et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A. 2010;107(49):21110–5. doi:10.1073/pnas.1004708107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shalitin N, Schlesinger H, Levy MJ, Kessler E, Kessler-Icekson G. Expression of procollagen C-proteinase enhancer in cultured rat heart fibroblasts: evidence for co-regulation with type I collagen. J Cell Biochem. 2003;90(2):397–407. doi:10.1002/jcb.10646.

    Article  CAS  PubMed  Google Scholar 

  88. Kessler-Icekson G, Schlesinger H, Freimann S, Kessler E. Expression of procollagen C-proteinase enhancer-1 in the remodeling rat heart is stimulated by aldosterone. Int J Biochem Cell Biol. 2006;38(3):358–65. doi:10.1016/j.biocel.2005.10.007.

    Article  CAS  PubMed  Google Scholar 

  89. Klappacher G, Franzen P, Haab D, Mehrabi M, Binder M, Plesch K, et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol. 1995;75(14):913–8.

    Article  CAS  PubMed  Google Scholar 

  90. Querejeta R, Lopez B, Gonzalez A, Sanchez E, Larman M, Martinez Ubago JL, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation. 2004;110(10):1263–8. doi:10.1161/01.CIR.0000140973.60992.9A.

    Article  CAS  PubMed  Google Scholar 

  91. Lofsjogard J, Kahan T, Diez J, Lopez B, Gonzalez A, Edner M, et al. Biomarkers of collagen type I metabolism are related to B-type natriuretic peptide, left ventricular size, and diastolic function in heart failure. J Cardiovasc Med. 2014;15(6):463–9. doi:10.2459/01.JCM.0000435617.86180.0b.

    Article  Google Scholar 

  92. Poulsen SH, Host NB, Egstrup K. Long-term changes in collagen formation expressed by serum carboxyterminal propeptide of type-I procollagen and relation to left ventricular function after acute myocardial infarction. Cardiology. 2001;96(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  93. Luyt CE, Landivier A, Leprince P, Bernard M, Pavie A, Chastre J, et al. Usefulness of cardiac biomarkers to predict cardiac recovery in patients on extracorporeal membrane oxygenation support for refractory cardiogenic shock. J Crit Care. 2012;27(5):524 e7–14. doi:10.1016/j.jcrc.2011.12.009.

    Article  PubMed  Google Scholar 

  94. Ahmad T, Wang T, O’Brien EC, Samsky MD, Pura JA, Lokhnygina Y, et al. Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail. 2015;3(1):30–9. doi:10.1016/j.jchf.2014.06.013.

    Article  PubMed  Google Scholar 

  95. Lok SI, Nous FM, van Kuik J, van der Weide P, Winkens B, Kemperman H, et al. Myocardial fibrosis and pro-fibrotic markers in end-stage heart failure patients during continuous-flow left ventricular assist device support. Eur J Cardiothorac Surg Off J Eur Assoc Cardiothorac Surg. 2015;48(3):407–15. doi:10.1093/ejcts/ezu539.

    Article  Google Scholar 

  96. Grosman-Rimon L, Jacobs I, Tumiati LC, McDonald MA, Bar-Ziv SP, Fuks A, et al. Longitudinal assessment of inflammation in recipients of continuous-flow left ventricular assist devices. Can J Cardiol. 2015;31(3):348–56. doi:10.1016/j.cjca.2014.12.006.

    Article  PubMed  Google Scholar 

  97. Hasin T, Kushwaha SS, Lesnick TG, Kremers W, Boilson BA, Schirger JA, et al. Early trends in N-terminal pro-brain natriuretic peptide values after left ventricular assist device implantation for chronic heart failure. Am J Cardiol. 2014;114(8):1257–63. doi:10.1016/j.amjcard.2014.07.056.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Gaggin is supported in part by the Clark Fund for Cardiac Research Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna K. Gaggin.

Ethics declarations

Conflict of Interest

Hanna K. Gaggin reports the following disclosures: 1) Roche Diagnostics: research grant, consultancy; 2) Portola: research grant; 3) Amgen: consultancy; 4) American Regent: consultancy; 5) Boston Heart Diagnostics: consultancy; 6) Critical Diagnostics: consultancy; 7) Ortho Clinical: consultancy; 8) EchoSense, Radiometer: clinical endpoint committee.

Dr. Motiwala does not have any disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motiwala, S.R., Gaggin, H.K. Biomarkers to Predict Reverse Remodeling and Myocardial Recovery in Heart Failure. Curr Heart Fail Rep 13, 207–218 (2016). https://doi.org/10.1007/s11897-016-0303-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0303-y

Keywords

Navigation