Speculation as to why the Frequency of Eosinophilic Esophagitis Is Increasing

  • Stuart Jon Spechler
Esophagus (J Clarke and N Ahuja, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Esophagus


Purpose of review

The frequency of eosinophilic esophagitis (EoE), an immune/antigen-mediated disorder first described in 1993, has been increasing rapidly. The purpose of this review is to consider hypotheses proposed to explain this increase and to speculate on their validity.

Recent findings

The hygiene hypothesis attributes the rise of EoE to modern hygienic conditions resulting in fewer childhood infections with microbes that might have protected against allergy development. Microbial dysbiosis, a change in the microbiome’s composition and diversity caused by a modern affluent lifestyle, also might contribute to allergic conditions. Environmental factors including modern chemicals contaminating crops, livestock treated with hormones and antibiotics, food additives and processing changes, and pollutants in the air and water conceivably might predispose to EoE. One intriguing hypothesis attributes increasing EoE to increasing use of acid-suppressive medications like proton pump inhibitors, which might prevent peptic digestion of food allergens, increase gastric permeability, and alter the microbiome to favor food allergy development. In a recent pediatric case-control study, use of acid suppressants in infancy was by far the single strongest risk factor identified for later development of EoE.


It remains unclear which, if any, of the above factors underlies the rising frequency of EoE. These factors need not be mutually exclusive, and the cause of EoE may well be multifactorial.


Eosinophilic esophagitis Risk factors Hygiene hypothesis Microbial dysbiosis Proton pump inhibitors 


Compliance with Ethical Standards

Conflict of Interest

Stuart Spechler reports receiving consultant fees from Ironwood Pharmaceuticals and Takeda Pharmaceuticals, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance ••Of major importance

  1. 1.
    Attwood SE, Smyrk TC, Demeester TR, Jones JB. Esophageal eosinophilia with dysphagia. A distinct clinicopathologic syndrome. Dig Dis Sci. 1993;38:109–16.CrossRefPubMedGoogle Scholar
  2. 2.
    • Dellon ES, Hirano I. Epidemiology and natural history of eosinophilic esophagitis. Gastroenterology. 2018;154:319–22. An excellent recent review article CrossRefPubMedGoogle Scholar
  3. 3.
    Dellon ES, Erichsen R, Baron JA, Shaheen NJ, Vyberg M, Sorensen HT, et al. The increasing incidence and prevalence of eosinophilic oesophagitis outpaces changes in endoscopic and biopsy practice: national population-based estimates from Denmark. Aliment Pharmacol Ther. 2015;41:662–70.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Arias A, Perez-Martinez I, Tenias JM, et al. Systematic review with meta-analysis: the incidence and prevalence of eosinophilic oesophagitis in children and adults in population-based studies. Aliment Pharmacol Ther. 2016;43:3–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Dellon ES, Jensen ET, Martin CF, Shaheen NJ, Kappelman MD. Prevalence of eosinophilic esophagitis in the United States. Clin Gastroenterol Hepatol. 2014;12:589–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Sperry SL, Crockett SD, Miller CB, Shaheen NJ, Dellon ES. Esophageal foreign-body impactions: epidemiology, time trends, and the impact of the increasing prevalence of eosinophilic esophagitis. Gastrointest Endosc. 2011;74:985–91.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jensen ET, Kappelman MD, Martin CF, Dellon ES. Health-care utilization, costs, and the burden of disease related to eosinophilic esophagitis in the United States. Am J Gastroenterol. 2015;110:626–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299:1259–60.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Smits HH, Hiemstra PS, Prazeres da Costa C, Ege M, Edwards M, Garn H, et al. Microbes and asthma: opportunities for intervention. J Allergy Clin Immunol. 2016;137:690–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. 2018;18:105–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Lambrecht BN, Hammad H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol. 2017;18:1076–83.CrossRefPubMedGoogle Scholar
  13. 13.
    Jensen ET, Kappelman MD, Kim HP, Ringel-Kulka T, Dellon ES. Early life exposures as risk factors for pediatric eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 2013;57:67–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Platts-Mills TA. The allergy epidemics: 1870-2010. J Allergy Clin Immunol. 2015;136:3–13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Squires KA, Cameron DJ, Oliver M, da Fonseca Junqueira JC. Herpes simplex and eosinophilic oesophagitis: the chicken or the egg? J Pediatr Gastroenterol Nutr. 2009;49:246–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Fritz J, Lerner D, Suchi M. Herpes simplex virus esophagitis in immunocompetent children: a harbinger of eosinophilic esophagitis? J Pediatr Gastroenterol Nutr. 2018;66:609-13.Google Scholar
  17. 17.
    Raman R. The impact of genetically modified (GM) crops in modern agriculture: a review. GM Crops Food. 2017;8:195–208.CrossRefPubMedGoogle Scholar
  18. 18.
    Jeong SH, Kang D, Lim MW, Kang CS, Sung HJ. Risk assessment of growth hormones and antimicrobial residues in meat. Toxicol Res. 2010;26:301–13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, et al. Scientific challenges in the risk assessment of food contact materials. Environ Health Perspect. 2017;125:095001.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mishra A, Hogan SP, Brandt EB, Rothenberg ME. An etiological role for aeroallergens and eosinophils in experimental esophagitis. J Clin Invest. 2001;107:83–90.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moawad FJ, Veerappan GR, Lake JM, et al. Correlation between eosinophilic oesophagitis and aeroallergens. Aliment Pharmacol Ther. 2010;31:509–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen Y, Blaser MJ. Inverse associations of Helicobacter pylori with asthma and allergy. Arch Intern Med. 2007;167:821–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Reibman J, Marmor M, Filner J, Fernandez-Beros ME, Rogers L, Perez-Perez GI, et al. Asthma is inversely associated with Helicobacter pylori status in an urban population. PLoS One. 2008;3:e4060.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest. 2011;121:3088–93.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dellon ES, Peery AF, Shaheen NJ, Morgan DR, Hurrell JM, Lash RH, et al. Inverse association of esophageal eosinophilia with Helicobacter pylori based on analysis of a US pathology database. Gastroenterology. 2011;141:1586–92.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    • Hussain K, Letley DP, Greenaway AB, et al. Helicobacter pylori-mediated protection from allergy is associated with IL-10-secreting peripheral blood regulatory T cells. Front Immunol. 2016;7:71. H. pylori infection induces regulatory T cells that can protect against allergy development CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nouraie M, Latifi-Navid S, Rezvan H, Radmard AR, Maghsudlu M, Zaer-Rezaii H, et al. Childhood hygienic practice and family education status determine the prevalence of Helicobacter pylori infection in Iran. Helicobacter. 2009;14:40–6.CrossRefPubMedGoogle Scholar
  28. 28.
    El-Serag HB, Sweet S, Winchester CC, Dent J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 2014;63:871–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Spechler SJ, Genta RM, Souza RF. Thoughts on the complex relationship between gastroesophageal reflux disease and eosinophilic esophagitis. Am J Gastroenterol. 2007;102(6):1301–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Untersmayr E, Jensen-Jarolim E. The effect of gastric digestion on food allergy. Curr Opin Allergy Clin Immunol. 2006;6:214–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Tobey NA, Hosseini SS, Argote CM, Dobrucali AM, Awayda MS, Orlando RC. Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol. 2004;99:13–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Souza RF, Huo X, Mittal V, Schuler CM, Carmack SW, Zhang HY, et al. Gastroesophageal reflux may cause esophagitis through a cytokine-mediated mechanism, not by caustic (acid) injury. Gastroenterology. 2009;137:1776–84.CrossRefPubMedGoogle Scholar
  33. 33.
    •• Dunbar KB, Agoston AT, Odze RD, Huo X, Pham TH, Cipher DJ, et al. Association of acute gastroesophageal reflux disease with esophageal histologic changes. JAMA. 2016;315:2104–12. Acute GERD in humans is a cytokine-mediated disease, not an acid burn CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Merwat SN, Spechler SJ. Might the use of acid suppressive medications predispose to the development of eosinophilic esophagitis? Am J Gastroenterol. 2009;104:1897–902.CrossRefPubMedGoogle Scholar
  35. 35.
    Rotman SR, Bishop TF. Proton pump inhibitor use in the U.S. ambulatory setting, 2002-2009. PLoS One. 2013;8:e56060.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hirano I, Spechler S, Furuta G, Dellon ES. White paper AGA: drug development for eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2017;15:1173–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Roberts NB. Human pepsins—their multiplicity, function and role in reflux disease. Aliment Pharmacol Ther. 2006;24(Suppl 2):2–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Prichard PJ, Yeomans ND, Mihaly GW, Jones DB, Buckle PJ, Smallwood RA, et al. Omeprazole: a study of its inhibition of gastric pH and oral pharmacokinetics after morning or evening dosage. Gastroenterology. 1985;88:64–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Husby S, Jensenius J, Svehag S. Passage of undegraded dietary antigen into the blood of healthy adults. Quantification, estimation of size distribution and relation of uptake to levels of specific antibodies. Scand J Immunol. 1985;22:83–92.CrossRefPubMedGoogle Scholar
  40. 40.
    Hopkins AM, McDonnell C, Breslin NP, O'Morain CA, Baird AW. Omeprazole increases permeability across isolated rat gastric mucosa pre-treated with an acid secretagogue. J Pharm Pharmacol. 2002;54:341–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Mullin JM, Valenzano MC, Whitby M, Lurie D, Schmidt JD, Jain V, et al. Esomeprazole induces upper gastrointestinal tract transmucosal permeability increase. Aliment Pharmacol Ther. 2008;28:1317–25.CrossRefPubMedGoogle Scholar
  42. 42.
    Theisen J, Nehra D, Citron D, Johansson J, Hagen JA, Crookes PF, et al. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg. 2000;4:50–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Williams C, McColl KE. Review article: proton pump inhibitors and bacterial overgrowth. Aliment Pharmacol Ther. 2006;23:3–10.CrossRefPubMedGoogle Scholar
  44. 44.
    Garcia-Mazcorro JF, Suchodolski JS, Jones KR, Clark-Price SC, Dowd SE, Minamoto Y, et al. Effect of the proton pump inhibitor omeprazole on the gastrointestinal bacterial microbiota of healthy dogs. FEMS Microbiol Ecol. 2012;80:624–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Untersmayr E, Schöll I, Swoboda I, Beil WJ, Förster-Waldl E, Walter F, et al. Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J Allergy Clin Immunol. 2003;112:616–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Schöll I, Untersmayr E, Bakos N, Roth-Walter F, Gleiss A, Boltz-Nitulescu G, et al. Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut allergens in BALB/c mice and humans. Am J Clin Nutr. 2005;81:154–60.CrossRefPubMedGoogle Scholar
  47. 47.
    Untersmayr E, Bakos N, Schöll I, Kundi M, Roth-Walter F, Szalai K, et al. Anti-ulcer drugs promote IgE formation toward dietary antigens in adult patients. FASEB J. 2005;19:656–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Veerappan GR, Perry JL, Duncan TJ, Baker TP, Maydonovitch C, Lake JM, et al. Prevalence of eosinophilic esophagitis in an adult population undergoing upper endoscopy: a prospective study. Clin Gastroenterol Hepatol. 2009;7:420–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Moawad FJ, Maydonovitch CL, Lake JM, Veerappan GR. PPIs may not predispose to eosinophilic esophagitis. Am J Gastroenterol. 2010;105:468–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen IL, Gao WY, Johnson AP, Niak A, Troiani J, Korvick J, et al. Proton pump inhibitor use in infants: FDA reviewer experience. J Pediatr Gastroenterol Nutr. 2012;54:8–14.CrossRefPubMedGoogle Scholar
  51. 51.
    •• Jensen ET, Kuhl JT, Martin LJ, Rothenberg ME, Dellon ES. Prenatal, intrapartum, and postnatal factors are associated with pediatric eosinophilic esophagitis. J Allergy Clin Immunol. 2018;141:214–22. In this pediatric case-control study, the use of acid suppressants in infancy was by far the single strongest risk factor identified for later development of EoE CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Baylor University Medical Center at DallasBaylor Scott & White Research InstituteDallasUSA

Personalised recommendations