Advertisement

Remote Patient Monitoring in IBD: Current State and Future Directions

  • Ashish Atreja
  • Emamuzo Otobo
  • Karthik Ramireddy
  • Allyssa Deorocki
Inflammatory Bowel Disease (S Hanauer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Inflammatory Bowel Disease

Abstract

Purpose of Review

Mobile apps are now increasingly used in conjunction with telemedicine and wearable devices to support remote patient monitoring (RPM). The goal of this paper is to review the available evidence and assess the scope of RPM integration into standard practices for care and management of chronic disease in general and, more specifically, inflammatory bowel disease (IBD).

Recent Findings

RPM has been associated with improvements in health outcomes and indicators across a broad range of chronic diseases. However, there is limited data on the effectiveness of RPM in IBD care. From the emerging literature and body of research, we found promising results about the feasibility of integrating RPM in IBD care and RPM’s capacity to support IBD improvement in key process and outcome metrics.

Summary

Concerns regarding privacy and provider acceptability have limited the mass integration of RPM to date. However, with the healthcare industry’s move toward value-based population care and the advent of novel payment models for RPM reimbursement, the adoption of RPM into standard IBD care practices will likely increase as the technology continues to improve and become a mainstream tool for healthcare delivery in the near future.

Keywords

Inflammatory bowel disease mHealth Remote patient monitoring (RPM) Chronic disease Digital medicine 

Notes

Funding Information

This work was funded in part by the National Center for Advancing Translational Sciences (UL1- TR001433), National Institutes of Health (5K23DK097451 - Atreja, A) and unrestricted grant from AbbVie Inc.

Compliance with Ethical Standards

Conflict of Interest

Ashish Atreja has a patent pending for Digital Medicine Prescribing Platform, RxUniverse, and is the scientific co-founder for Rx.Health, for which he receives royalties.

Allyssa Deorocki, Emamuzo Otobo, and Karthik Ramireddy declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• of major importance

  1. 1.
    Labrique AB, Vasudevan L, Kochi E, Fabricant R, Mehl G. Health innovations as health system strengthening tools: 12 common applications and a visual framework. Glob Health Sci Pract. 2013;1(2):160–71.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Smith A. Record shares of Americans now own smartphones, have home broadband. [Internet]. Washington, D.C.: Pew Research Center; 2017 Jan. (Fact Tank). Available from: http://www.pewresearch.org/fact-tank/2017/01/12/evolution-of-technology/#.
  3. 3.
    •• Khan S, Dasrath F, Farghaly S, Otobo E, Riaz M, Rogers J, et al. Unmet communication and information needs for patients with IBD: implications for mobile health technology. Br J Med Med Res. 2016;12(3):1–11. This study shows that IBD patients need remote patient monitoring that evaluates disease control and the goals of care.CrossRefGoogle Scholar
  4. 4.
    Baars JE, Markus T, Kuipers EJ, van der Woude CJ. Patients’ preferences regarding shared decision-making in the treatment of inflammatory bowel disease: results from a patient-empowerment study. Digestion. 2010;81(2):113–9.  https://doi.org/10.1159/000253862.CrossRefPubMedGoogle Scholar
  5. 5.
    Ullman TA, Atreja A. Building evidence for care beyond the medical centre. Lancet. 390(10098):919–20.Google Scholar
  6. 6.
    Treskes RW, van der Velde ET, Barendse R, Bruining N. Mobile health in cardiology: a review of currently available medical apps and equipment for remote monitoring. Expert Rev Med Devices. 2016;13(9):823–30.  https://doi.org/10.1080/17434440.2016.1218277.CrossRefPubMedGoogle Scholar
  7. 7.
    Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011;25(9):788–98.  https://doi.org/10.1177/1545968311425908.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Riaz MS, Atreja A. Personalized technologies in chronic gastrointestinal disorders: self-monitoring and remote sensor technologies. Clin Gastroenterol Hepatol. 14(12):1697–705.Google Scholar
  9. 9.
    World Health Organization. Monitoring and evaluating digital health interventions: a practical guide to conducting research and assessment. 2016Google Scholar
  10. 10.
    Wootton R. Twenty years of telemedicine in chronic disease management—an evidence synthesis. J Telemed Telecare. 2012;18(4):211–20.  https://doi.org/10.1258/jtt.2012.120219.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Grist R, Porter J, Stallard P. Mental health mobile apps for preadolescents and adolescents: a systematic review. Eysenbach G, editor. J Med Internet Res. 2017;19(5):e176.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kane JM. Technology-based interventions in health care. Epidemiol Psychiatr Sci. 2014;23(4):323–6.  https://doi.org/10.1017/S2045796014000444.CrossRefPubMedGoogle Scholar
  13. 13.
    Cohen R, Stussman B. Health information technology use among men and women aged 18–64: early release of estimates from the National Health Interview Survey, January–June 2009. National Center for Health Statistics; 2005Google Scholar
  14. 14.
    Ben-Zeev D, Scherer EA, Wang R, Xie H, Campbell AT. Next-generation psychiatric assessment: using smartphone sensors to monitor behavior and mental health. Psychiatr Rehabil J. 2015;38(3):218–26.  https://doi.org/10.1037/prj0000130.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Blanchet KD. Remote patient monitoring. Telemed E-Health. 2008;14(2):127–30.  https://doi.org/10.1089/tmj.2008.9989.CrossRefGoogle Scholar
  16. 16.
    Wayne N, Ritvo P. Smartphone-enabled health coach intervention for people with diabetes from a modest socioeconomic strata community: single-arm longitudinal feasibility study. Eysenbach G, editor. J Med Internet Res. 2014;16(6):e149.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Labrique A, Vasudevan L, Chang LW, Mehl G. H_pe for mHealth: more “y” or “o” on the horizon? Int J Med Inf. 2013;82(5):467–9.  https://doi.org/10.1016/j.ijmedinf.2012.11.016.CrossRefGoogle Scholar
  18. 18.
    Muralidharan S, Ranjani H, Anjana RM, Allender S, Mohan V. Mobile health technology in the prevention and management of type 2 diabetes. Indian J Endocrinol Metab. 2017;21(2):334–40.  https://doi.org/10.4103/ijem.IJEM_407_16.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Huckvale K, Morrison C, Ouyang J, Ghaghda A, Car J. The evolution of mobile apps for asthma: an updated systematic assessment of content and tools. BMC Med. 2015;13:58.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Nicholas J, Larsen ME, Proudfoot J, Christensen H. Mobile apps for bipolar disorder: a systematic review of features and content quality. Eysenbach G, editor. J Med Internet Res. 2015;17(8):e198.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Parmanto B, Pramana G, Yu DX, Fairman AD, Dicianno BE. Development of mHealth system for supporting self-management and remote consultation of skincare. BMC Med Inform Decis Mak. 2015;15(114).  https://doi.org/10.1186/s12911-015-0237-4.
  22. 22.
    •• Marko KI, Krapf JM, Meltzer AC, Oh J, Ganju N, Martinez AG, et al. Testing the feasibility of remote patient monitoring in prenatal care using a mobile app and connected devices: a prospective observational trial. Eysenbach G, editor. JMIR Res Protoc. 2016;5(4):e200. This study is the first to demonstrate the feasibility of using a digital health platform to remotely collect data in near real-time and to stratify for high-risk outcomes using an effective alert system. It demonstrated that a system using a mobile phone app coupled to remote monitoring devices is feasible for prenatal care.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. Cornford T, editor. PLoS Med. 2013;10(1):e1001362.  https://doi.org/10.1371/journal.pmed.1001362.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Seto E, Leonard JK, Cafazzo AJ, Barnsley J, Masino C, Ross JH. Mobile phone-based telemonitoring for heart failure management: a randomized controlled trial. J Med Internet Res. 2012;14(1):e31.  https://doi.org/10.2196/jmir.1909.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    van Deen WK, Spiro A, Burak Ozbay A, Skup M, Centeno A, Duran NE, et al. The impact of value-based healthcare for inflammatory bowel diseases on healthcare utilization: a pilot study. Eur J Gastroenterol Hepatol. 2017;29(3):331–7.  https://doi.org/10.1097/MEG.0000000000000782.CrossRefPubMedGoogle Scholar
  26. 26.
    Kosinski L, Brill JV, Sorensen M, Baum C, Turpin R, Landsman P. 824 Project Sonar: reduction in cost of care in an attributed cohort of patients with Crohn’s disease. Gastroenterology. 2016;150(4):S173.  https://doi.org/10.1016/S0016-5085(16)30668-0.CrossRefGoogle Scholar
  27. 27.
    Atreja A, Khan S, Rogers DJ, Otobo E, Patel PN, Ullman T, et al. Impact of the mobile HealthPROMISE platform on the quality of care and quality of life in patients with inflammatory bowel disease: study protocol of a pragmatic randomized controlled trial. JMIR Res Protoc. 2015;4(1):e23.  https://doi.org/10.2196/resprot.4042.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Whiteside SPH, Ale CM, Vickers Douglas K, Tiede MS, Dammann JE. Case examples of enhancing pediatric OCD treatment with a smartphone application. Clin Case Stud. 2014;13(1):80–94.  https://doi.org/10.1177/1534650113504822.CrossRefGoogle Scholar
  29. 29.
    El-Gayar O, Timsina P, Nawar N, Eid W. Mobile applications for diabetes self-management: status and potential. J Diabetes Sci Technol. 2013;7(1):247–62.  https://doi.org/10.1177/193229681300700130.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    •• de Jong M, van der Meulen-de Jong A, Romberg-Camps M, Degens J, Becx M, Markus T, et al. Development and feasibility study of a telemedicine tool for all patients with IBD: MyIBDcoach. Inflamm Bowel Dis. 2017;23(4):485–93. The results of this randomized trial among outpatients in two academic and two non-academic hospitals in the Netherlands shows substantial benefits of remote patient monitoring with patient use of a tablet or smartphone application called myIBDcoach compared with standard care in adults with inflammatory bowel disease.CrossRefPubMedGoogle Scholar
  31. 31.
    Zia JK, Le T, Munson S, Heitkemper MM, Demiris G. Download alert: understanding gastroenterology patients’ perspectives on health-related smartphone apps. Clin Transl Gastroenterol. 2015;6(7):e96.  https://doi.org/10.1038/ctg.2015.25.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Ding H, Karunanithi M, Kanagasingam Y, Vignarajan J, Moodley Y. A pilot study of a mobile-phone-based home monitoring system to assist in remote interventions in cases of acute exacerbation of COPD. J Telemed Telecare. 2014;20(3):128–34.  https://doi.org/10.1177/1357633X14527715.CrossRefPubMedGoogle Scholar
  33. 33.
    Madigan E, Schmotzer BJ, Struk CJ, DiCarlo CM, Kikano G, Piña IL, et al. Home health care with telemonitoring improves health status for older adults with heart failure. Home Health Care Serv Q. 2013;32(1):57–74.  https://doi.org/10.1080/01621424.2012.755144.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Cushing A, Manice MP, Ting A, Parides MK. Feasibility of a novel mHealth management system to capture and improve medication adherence among adolescents with asthma. Patient Prefer Adherence. 2016;10:2271–5.  https://doi.org/10.2147/PPA.S115713.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Hickey KT, Hauser NR, Valente LE, Riga TC, Frulla AP, Creber RM, et al. A single-center randomized, controlled trial investigating the efficacy of a mHealth ECG technology intervention to improve the detection of atrial fibrillation: the iHEART study protocol. BMC Cardiovasc Disord. 2016;16(1):152.  https://doi.org/10.1186/s12872-016-0327-y.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Goyal S, Nunn AC, Rotondi M, Couperthwaite BA, Reiser S, Simone A, et al. A mobile app for the self-management of type 1 diabetes among adolescents: a randomized controlled trial. JMIR Mhealth Uhealth. 2017;5(6):e82.  https://doi.org/10.2196/mhealth.7336.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Dicianno BE, Parmanto B, Fairman AD, Crytzer TM, Yu DX, Pramana G, et al. Perspectives on the evolution of mobile (mHealth) technologies and application to rehabilitation. Phys Ther. 2015;95(3):397–405.  https://doi.org/10.2522/ptj.20130534.CrossRefPubMedGoogle Scholar
  38. 38.
    Cafazzo AJ, Casselman M, Hamming N, Katzman KD, Palmert RM. Design of an mHealth app for the self-management of adolescent type 1 diabetes: a pilot study. J Med Internet Res. 2012;14(3):e70.  https://doi.org/10.2196/jmir.2058.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Tregarthen JP, Lock J, Darcy AM. Development of a smartphone application for eating disorder self-monitoring: a Smartphone App For Self-Monitoring. Int J Eat Disord. 2015;48(7):972–82.  https://doi.org/10.1002/eat.22386.CrossRefPubMedGoogle Scholar
  40. 40.
    Loftus EV. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504–17.  https://doi.org/10.1053/j.gastro.2004.01.063.CrossRefPubMedGoogle Scholar
  41. 41.
    D’Auria JP, Kelly M. Inflammatory bowel disease: top resources for children, adolescents, and their families. J Pediatr Health Care. 27(2):e25–8.Google Scholar
  42. 42.
    Irvine EJ. Patients’ fears and unmet needs in inflammatory bowel disease. Aliment Pharmacol Ther. 2004;20(s4):54–9.  https://doi.org/10.1111/j.1365-2036.2004.02053.x.CrossRefPubMedGoogle Scholar
  43. 43.
    van der Have M, van der Aalst KS, Kaptein AA, Leenders M, Siersema PD, Oldenburg B, et al. Determinants of health-related quality of life in Crohn’s disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8(2):93–106.  https://doi.org/10.1016/j.crohns.2013.04.007.CrossRefPubMedGoogle Scholar
  44. 44.
    Gomez-Gil E, Vidal A, Panes J, Jaen J, Peri J, Fernandez-Egea E, et al. Relationship between patient’s subjective stress perception and the course of inflammatory bowel disease. Gastroenterol Hepatol. 2003;26(7):411–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Guthrie E, Jackson J, Shaffer J, Thompson D, Tomenson B, Creed F. Psychological disorder and severity of inflammatory bowel disease predict health-related quality of life in ulcerative colitis and Crohn’s disease. Am J Gastroenterol. 2002;97(8):1994–9.  https://doi.org/10.1111/j.1572-0241.2002.05842.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Kosinski LR, Brill J, Regueiro M. Making a medical home for IBD patients. Curr Gastroenterol Rep [Internet]. 2017;19(5). https://doi.org/10.1007/s11894-017-0561-1.Google Scholar
  47. 47.
    Ehrlich O, Atreja A, Markus-Kennell S, Frederick K. CCFA GI Buddy provides patient reported outcomes and IBD symptoms evaluation: P-50. Inflamm Bowel Dis. 2012;18:S35–6.  https://doi.org/10.1097/00054725-201212001-00083.CrossRefGoogle Scholar
  48. 48.
    de Jong MJ, van der Meulen-de Jong AE, Romberg-Camps MJ, Becx MC, Maljaars JP, Cilissen M, et al. Telemedicine for management of inflammatory bowel disease (myIBDcoach): a pragmatic, multicentre, randomised controlled trial. The Lancet. 390(10098):959–68.Google Scholar
  49. 49.
    Szigethy EM, Allen JI, Reiss M, Cohen W, Perera LP, Brillstein L, et al. White paper AGA: the impact of mental and psychosocial factors on the care of patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2017 Jul;15(7):986–97.  https://doi.org/10.1016/j.cgh.2017.02.037.CrossRefPubMedGoogle Scholar
  50. 50.
    Melmed G. Evaluating a prediction tool and decision aid for patients with Crohn’s disease [Internet]. Los Angeles, CA: Digestive Disease Center, Cedars-Sinai Medical Group; Report No.: IRB no. 35175. Available from: https://www.cedars-sinai.edu/Patients/Programs-and-Services/Digestive-Diseases/Clinical-Trials/Shared-Decision-Making.aspx.
  51. 51.
    Hall JL, McGraw D. For telehealth to succeed, privacy and security risks must be identified and addressed. Health Aff (Millwood). 2014;33(2):216–21.  https://doi.org/10.1377/hlthaff.2013.0997.CrossRefGoogle Scholar
  52. 52.
    Luxton DD, Kayl RA, Mishkind MC. mHealth data security: the need for HIPAA-compliant standardization. Telemed E-Health. 2012;18(4):284–8.  https://doi.org/10.1089/tmj.2011.0180.CrossRefGoogle Scholar
  53. 53.
    Hashash JG, Ramos-Rivers C, Youk A, Chiu WK, Duff K, Regueiro M, et al. Quality of sleep and coexistent psychopathology have significant impact on fatigue burden in patients with inflammatory bowel disease: J Clin Gastroenterol 2016;1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashish Atreja
    • 1
  • Emamuzo Otobo
    • 1
  • Karthik Ramireddy
    • 1
  • Allyssa Deorocki
    • 2
  1. 1.Division of GastroenterologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Mailman School of Public HealthColumbia UniversityNew YorkUSA

Personalised recommendations