Skip to main content

Advertisement

Log in

Issues in Defining the Burden of Prediabetes Globally

  • Diabetes Epidemiology (E Selvin and K Foti, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Using a global perspective, this review collates evidence on the heterogeneity of prediabetes definitions and diagnostic methods, their clinical and public health implications, and discusses possible options for improvement.

Recent Findings

Our review notes that the concept of prediabetes is increasingly recognized worldwide, but against a background of non-uniform definition and diagnostic criteria. This results in widely varying burden estimation.

Summary

Current evidence shows a variety of prediabetes phenotypes. This reflects biological and diagnostic heterogeneity, resulting from the use of different tests (glucose or HbA1C) and thresholds to define prediabetes. The biological and diagnostic variabilities have implications for the characterization of the burden of prediabetes, natural history, prognosis, screening, implementation of lifestyle or drug interventions to mitigate related health risks, and monitoring of the effects of such interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Herron CA. Screening in diabetes mellitus: report of the Atlanta workshop. Diabetes Care. 1979;2:357–62.

    Article  CAS  Google Scholar 

  2. Fajans SS. I. Identification of chemical diabetes. The definition of chemical diabetes. Metabolism. 1973;22:211–7.

    Article  CAS  Google Scholar 

  3. Jackson WP. Prediabetes; a synthesis. Postgrad Med J. 1959;35:287–96.

    Article  CAS  Google Scholar 

  4. World Health Organization. WHO Expert Committee on Diabetes Mellitus. A report of the WHO Expert Committee. Geneva; 1965.

  5. Group NDD. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. Diabetes. 1979;28:1039–57.

    Article  Google Scholar 

  6. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 1997;20:1183–97.

  7. World Health Organization. WHO Expert Committee on Diabetes Mellitus. Geneva; 1980.

  8. Mellitus D. Definition, diagnosis and classification of diabetes mellitus and its complications Part 1 : Diagnosis and Classification of. World Health. 1999;15:539–53.

  9. Charles MA, Fontbonne A, Thibult N, Warnet JM, Rosselin GE, Eschwege E. Risk factors for NIDDM in white population: Paris prospective study. Diabetes. 1991;40:796–799.

    Article  CAS  Google Scholar 

  10. Genuth S, KGMM A, Bennett P, Buse J, Defronzo R, Kahn R, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–7.

    Article  Google Scholar 

  11. Narayan KMV, Imperatore G, Benjamin SM, Engelgau MM. Targeting people with pre-diabetes. BMJ. 2002;325:403–4.

    Article  Google Scholar 

  12. Sherwin RS, Anderson RM, Buse JB, Chin MH, Eddy D, Fradkin J, et al. The prevention or delay of type 2 diabetes. Diabetes Care. 2003;26(Suppl 1):S62–9.

    PubMed  Google Scholar 

  13. American Diabetes Association. Standards of medical care in diabetes--2010. Diabetes Care. 2010;33:S11–61.

  14. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate. Geneva; 2006.

  15. Nathan DM, Balkau B, Bonora E, Borch-Johnsen K, Buse JB, Colagiuri S, et al. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1–8.

    Article  Google Scholar 

  16. Qiao Q. Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care. 2003;26:61–9.

    Article  Google Scholar 

  17. James C, Bullard KM, Rolka DB, Geiss LS, Williams DE, Cowie CC, et al. Implications of alternative definitions of prediabetes for prevalence in U.S. adults. Diabetes Care. 2011;34:387–91.

    Article  Google Scholar 

  18. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care. 2000;23:1108–12.

    Article  CAS  Google Scholar 

  19. Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat T, et al. Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med. 2005;353:1454–62.

    Article  CAS  Google Scholar 

  20. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800–11.

    Article  CAS  Google Scholar 

  21. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    Article  CAS  Google Scholar 

  22. Lorenzo C, Wagenknecht LE, Hanley AJG, Rewers MJ, Karter AJ, Haffner SM. A1C between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010;33:2104–9.

    Article  CAS  Google Scholar 

  23. • Færch K, Johansen NB, Witte DR, Lauritzen T, Jørgensen ME, Vistisen D. Relationship between insulin resistance and β-cell dysfunction in subphenotypes of prediabetes and type 2 diabetes. J Clin Endocrinol Metab. 2015;100:707–16. This study addressed the extent to which metabolic abnormalities (insulin resistance and beta-cell dysfunction) are captured by a glycated hemoglobin-based definition of prediabetes.

    Article  Google Scholar 

  24. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  CAS  Google Scholar 

  25. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44:991–1005.

    Article  CAS  Google Scholar 

  26. Wheeler E, Leong A, Liu C-T, Hivert M-F, Strawbridge RJ, Podmore C, et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 2017;14:e1002383.

    Article  Google Scholar 

  27. • Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. This study reports the most recent estimates of the prevalence of prediabetes in various regions of the world.

    Article  CAS  Google Scholar 

  28. Anjana RM, CSS R, Deepa M, Pradeepa R, Sudha V, Nair HD, et al. Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai urban rural epidemiology study (CURES). Diabetes Care. 2015;38:1441–8.

    Article  Google Scholar 

  29. Qiao Q. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care. 2003;26:1770–80.

    Article  Google Scholar 

  30. • Shen J, Kondal D, Rubinstein A, Irazola V, Gutierrez L, Miranda JJ, et al. A Multiethnic study of pre-diabetes and diabetes in LMIC. Glob Heart. 2016;11:61–70. This study reports the global prevalence of prediabetes, including estimates of prevalence of prediabetes in various regions of the world.

    Article  Google Scholar 

  31. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and Trends in Diabetes Among Adults in the United States, 1988–2012. JAMA. 2015;314:1021–9.

    Article  CAS  Google Scholar 

  32. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, et al. Prevalence and control of diabetes in Chinese adults. JAMA. 2013;310:948.

    Article  CAS  Google Scholar 

  33. Menke A, Casagrande S, Cowie CC. Prevalence of diabetes in adolescents aged 12 to 19 years in the United States, 2005–2014. JAMA. 2016;316:344.

    Article  Google Scholar 

  34. Selvin E, Parrinello CM, Sacks DB, Coresh J. Trends in prevalence and control of diabetes in the United States, 1988–1994 and 1999–2010. Ann Intern Med. 2014;160:517.

    Article  Google Scholar 

  35. Bullard KM, Saydah SH, Imperatore G, Cowie CC, Gregg EW, Geiss LS, et al. Secular Changes in U.S. Prediabetes prevalence defined by hemoglobin A1c and fasting plasma glucose. Diabetes Care. 2013;36:2286–93.

    Article  CAS  Google Scholar 

  36. Caspersen CJ, Thomas GD, Beckles GLA, Bullard KMK. Secular changes in prediabetes indicators among older-adult americans, 1999–2010. Am J Prev Med. 2015;48:253–63.

    Article  Google Scholar 

  37. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011;378:31–40.

    Article  CAS  Google Scholar 

  38. NCD Risk Factor Collaboration (NCD-RisC). Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331,288 participants. Lancet Diabetes Endocrinol. 2015;3:624–37.

    Article  Google Scholar 

  39. Barr RG, Nathan DM, Meigs JB, Singer DE. Tests of glycemia for the diagnosis of type 2 diabetes mellitus. Ann Intern Med. 2002;137:263–72.

    Article  Google Scholar 

  40. Balion CM, Raina PS, Gerstein HC, Santaguida PL, Morrison KM, Booker L, et al. Reproducibility of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) classification: a systematic review. Clin Chem Lab Med. 2007;45:1180–5.

    Article  CAS  Google Scholar 

  41. Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, et al. Diagnosis, prognosis, and treatment of impaired glucose tolerance and impaired fasting glucose. Evid Rep Technol Assess. 2005;1–11.

  42. Selvin E, Wang D, Lee AK, Bergenstal RM, Coresh J. Identifying trends in undiagnosed diabetes in U.S. Adults by using a confirmatory definition: a cross-sectional study. Ann Intern Med. 2017;167:769–76.

    Article  Google Scholar 

  43. Cowie CC, Rust KF, Byrd-Holt DD, Gregg EW, Ford ES, Geiss LS, et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care. 2010;33:562–8.

    Article  Google Scholar 

  44. Mann DM, Carson AP, Shimbo D, Fonseca V, Fox CS, Muntner P. Impact of A1C screening criterion on the diagnosis of pre-diabetes among U.S. adults. Diabetes Care. 2010;33:2190–5.

    Article  Google Scholar 

  45. Menke A, Rust KF, Cowie CC. Diabetes based on 2-h plasma glucose among those classified as having prediabetes based on fasting plasma glucose or A1c. Diab Vasc Dis Res. 2018;15:46–54.

    Article  CAS  Google Scholar 

  46. Faerch K, Hulmán A, Solomon TPJ. Heterogeneity of pre-diabetes and type 2 diabetes: implications for prediction, prevention and treatment responsiveness. Curr Diabetes Rev. 2016;12:30–41.

    Article  CAS  Google Scholar 

  47. • Ali MK, Bullard KMK, Saydah S, Imperatore G, Gregg EW. Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 2018;6:392–403. This study describes the cardiovascular and renal burdens associated with the various prediabetes phenotypes in a US national sample.

    Article  Google Scholar 

  48. •• Warren B, Pankow JS, Matsushita K, Punjabi NM, Daya NR, Grams M, et al. Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017;5:34–42. This study investigated the ability of all the existing definitions of prediabetes at accurately predicting a vast array of outcomes (cardiovascular, renal and mortality).

    Article  Google Scholar 

  49. Selvin E, Crainiceanu CM, Brancati FL, Coresh J. Short-term variability in measures of glycemia and implications for the classification of diabetes. Arch Intern Med. 2007;167:1545.

    Article  CAS  Google Scholar 

  50. Selvin E, Wang D, Matsushita K, Grams ME, Coresh J. Prognostic implications of single-sample confirmatory testing for undiagnosed diabetes: a prospective cohort study. Ann Intern Med. 2018; https://doi.org/10.7326/M18-0091.

    Article  Google Scholar 

  51. Lee LT, Alexandrov AW, Howard VJ, Kabagambe EK, Hess MA, McLain RM, et al. Race, regionality and pre-diabetes in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. Prev Med. 2014;63:43–7.

    Article  Google Scholar 

  52. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL, KM F, et al. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315:2284.

    Article  CAS  Google Scholar 

  53. Williams DR, Priest N, Anderson NB. Understanding associations among race, socioeconomic status, and health: Patterns and prospects. Health Psychol. 2016;35:407–11.

    Article  Google Scholar 

  54. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socio-economic position: a systematic review and meta-analysis. Int J Epidemiol. 2011;40:804–18.

    Article  Google Scholar 

  55. Agardh EE, Ahlbom A, Andersson T, Efendic S, Grill V, Hallqvist J, et al. Socio-economic position at three points in life in association with type 2 diabetes and impaired glucose tolerance in middle-aged Swedish men and women. Int J Epidemiol. 2007;36:84–92.

    Article  CAS  Google Scholar 

  56. Derks IPM, Koster A, Schram MT, Stehouwer CDA, Dagnelie PC, Groffen DAI, et al. The association of early life socioeconomic conditions with prediabetes and type 2 diabetes: results from the Maastricht study. Int J Equity Health. 2017;16:61.

    Article  Google Scholar 

  57. • Cavagnolli G, Pimentel AL, PAC F, Gross JL, Camargo JL. Effect of ethnicity on HbA1c levels in individuals without diabetes: systematic review and meta-analysis. PLoS One. 2017;12:e0171315. This study provides a systematic overview of the evidence on the relation between ethnicity and glycated hemoglobin levels.

    Article  Google Scholar 

  58. Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97:1067–72.

    Article  CAS  Google Scholar 

  59. Herman WH, Ma Y, Uwaifo G, Haffner S, Kahn SE, Horton ES, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care. 2007;30:2453–7.

    Article  CAS  Google Scholar 

  60. Herman WH, Dungan KM, Wolffenbuttel BHR, Buse JB, Fahrbach JL, Jiang H, et al. Racial and ethnic differences in mean plasma glucose, hemoglobin A1c, and 1,5-anhydroglucitol in over 2000 patients with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:1689–94.

    Article  CAS  Google Scholar 

  61. Selvin E, Steffes MW, Ballantyne CM, Hoogeveen RC, Coresh J, Brancati FL. Racial differences in glycemic markers: a cross-sectional analysis of community-based data. Ann Intern Med. 2011;154:303–9.

    Article  Google Scholar 

  62. Ziemer DC, Kolm P, Weintraub WS, Vaccarino V, Rhee MK, Twombly JG, et al. Glucose-independent, black-white differences in hemoglobin A1c levels: a cross-sectional analysis of 2 studies. Ann Intern Med. 2010;152:770–7.

    Article  Google Scholar 

  63. Chapp-Jumbo E, Edeoga C, Wan J, Dagogo-Jack S. Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) Research Group. Ethnic disparity in hemoglobin A1c levels among normoglycemic offspring of parents with type 2 diabetes mellitus. Endocr Pract. 2012;18:356–62.

    Article  Google Scholar 

  64. Shipman KE, Jawad M, Sullivan KM, Ford C, Gama R. Ethnic/racial determinants of glycemic markers in a UK sample. Acta Diabetol. 2015;52:687–92.

    Article  CAS  Google Scholar 

  65. de Miranda VA, Cruz Filho RA, de Oliveira TS, Moscavitch SD, Kang HC, Miranda Chagas SV, et al. Racial differences in HbA1c: a cross-sectional analysis of a Brazilian public primary care population. Prim Care Diabetes. 2013;7:135–41.

    Article  Google Scholar 

  66. Mostafa SA, Davies MJ, Webb DR, Srinivasan BT, Gray LJ, Khunti K. Independent effect of ethnicity on glycemia in South Asians and White Europeans. Diabetes Care. 2012;35:1746–8.

    Article  Google Scholar 

  67. Jørgensen ME, Bjerregaard P, Borch-Johnsen K, Witte D. New diagnostic criteria for diabetes: is the change from glucose to HbA1c possible in all populations? J Clin Endocrinol Metab. 2010;95:E333–6.

    Article  Google Scholar 

  68. Selvin E. Are there clinical implications of racial differences in HbA1c? A difference, to be a difference, must make a difference. Diabetes Care. 2016;39:1462–7.

    Article  CAS  Google Scholar 

  69. Herman WH. Are there clinical implications of racial differences in HbA1c? Yes, to not consider can do great harm! Diabetes Care. 2016;39:1458–61.

    Article  CAS  Google Scholar 

  70. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59:3229–39.

    Article  CAS  Google Scholar 

  71. Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C, Hunt D, et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007;78:305–12.

    Article  Google Scholar 

  72. Zhang X, Gregg EW, Williamson DF, Barker LE, Thomas W, KMK B, et al. A1C level and future risk of diabetes: a systematic review. Diabetes Care. 2010;33:1665–73.

    Article  CAS  Google Scholar 

  73. Heianza Y, Hara S, Arase Y, Saito K, Fujiwara K, Tsuji H, et al. HbA1c 5·7-6·4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet. 2011;378:147–55.

    Article  CAS  Google Scholar 

  74. •• Morris DH, Khunti K, Achana F, Srinivasan B, Gray LJ, Davies MJ, et al. Progression rates from HbA1c 6.0–6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. 2013;56:1489–93. This study gives an overview of studies of the rate progression to diabetes among individuals with prediabetes defined on the basis of glycated hemoglobin.

    Article  CAS  Google Scholar 

  75. Forouhi NG, Luan J, Hennings S, Wareham NJ. Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: the Ely study 1990–2000. Diabet Med. 2007;24:200–7.

    Article  CAS  Google Scholar 

  76. Færch K, Witte DR, Brunner EJ, Kivimäki M, Tabák A, Jørgensen ME, et al. Physical activity and improvement of glycemia in prediabetes by different diagnostic criteria. J Clin Endocrinol Metab. 2017;102:3712–21.

    Article  Google Scholar 

  77. • Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953. This study is a good summary of the evidence on the influence of prediabetes on the risk of cardiovascular disease.

    Article  Google Scholar 

  78. Juraschek SP, Steffes MW, Selvin E. Associations of alternative markers of glycemia with hemoglobin A(1c) and fasting glucose. Clin Chem. 2012;58:1648–55.

    Article  CAS  Google Scholar 

  79. Kengne AP, Erasmus RT, Levitt NS, Matsha TE. Alternative indices of glucose homeostasis as biochemical diagnostic tests for abnormal glucose tolerance in an African setting. Prim Care Diabetes. 2017;11:119–31.

    Article  Google Scholar 

  80. Selvin E, Rawlings AM, Lutsey PL, Maruthur N, Pankow JS, Steffes M, et al. Fructosamine and glycated albumin and the risk of cardiovascular outcomes and death. Circulation. 2015;132:269–77.

    Article  CAS  Google Scholar 

  81. Selvin E, Rawlings AM, Grams M, Klein R, Sharrett AR, Steffes M, et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014;2:279–88.

    Article  Google Scholar 

  82. Parrinello CM, Sharrett AR, Maruthur NM, Bergenstal RM, Grams ME, Coresh J, et al. Racial differences in and prognostic value of biomarkers of hyperglycemia. Diabetes Care. 2016;39:589–95.

    Article  CAS  Google Scholar 

  83. Selvin E, Warren B, He X, Sacks DB, Saenger AK. Establishment of community-based reference intervals for fructosamine, glycated albumin, and 1,5-anhydroglucitol. Clin Chem. 2018;64:843–50.

    Article  CAS  Google Scholar 

  84. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  CAS  Google Scholar 

  85. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  CAS  Google Scholar 

  86. Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008;371:1783–9.

    Article  Google Scholar 

  87. Ramachandran AA, Diabetes I, Programme P, Snehalatha C, Mary S, Mukesh B, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289–97.

    Article  CAS  Google Scholar 

  88. Saito T, Watanabe M, Nishida J, Izumi T, Omura M, Takagi T, et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med. 2011;171:1352–60.

    Article  Google Scholar 

  89. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289–97.

    Article  CAS  Google Scholar 

  90. The Diabetes Prevention Program Research Group*. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes. 2005;54:1150–6.

  91. Dream T, Assessment DR, Investigators T. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368:1096–105.

    Article  Google Scholar 

  92. De Fronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364:1104–15.

    Article  Google Scholar 

  93. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–7.

    Article  CAS  Google Scholar 

  94. Kawamori R, Tajima N, Iwamoto Y, Kashiwagi A, Shimamoto K, Kaku K. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373:1607–14.

    Article  CAS  Google Scholar 

  95. Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, et al. Long-term sustainability of diabetes prevention approaches. JAMA. 2017;177:1808.

    Google Scholar 

  96. Weber MB, Ranjani H, Staimez LR, Anjana RM, Ali MK, KMV N, et al. The stepwise approach to diabetes prevention: results from the D-CLIP randomized controlled trial. Diabetes Care. 2016;39:1760–7.

    Article  CAS  Google Scholar 

  97. Thankappan KR, Sathish T, Tapp RJ, Shaw JE, Lotfaliany M, Wolfe R, et al. A peer-support lifestyle intervention for preventing type 2 diabetes in India: a cluster-randomized controlled trial of the Kerala Diabetes Prevention Program. PLoS Med. 2018;15:e1002575.

    Article  Google Scholar 

  98. Galaviz KI, Weber MB, Straus A, Haw JS, Narayan KMV, Ali MK. Global diabetes prevention interventions: a systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care. 2018;41:1526–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin B. Echouffo-Tcheugui.

Ethics declarations

Conflict of Interest

Justin B. Echouffo-Tcheugui, Andre P. Kengne, and Mohammed K Ali declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diabetes Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echouffo-Tcheugui, J.B., Kengne, A.P. & Ali, M.K. Issues in Defining the Burden of Prediabetes Globally. Curr Diab Rep 18, 105 (2018). https://doi.org/10.1007/s11892-018-1089-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1089-y

Keywords

Navigation