Skip to main content

Advertisement

Log in

Will Genetic Engineering Carry Xenotransplantation of Pig Islets to the Clinic?

  • Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Porcine islets represent a potentially attractive beta-cell source for xenotransplantation into patients with type 1 diabetes, who are not eligible to islet allo-transplantation due to a lack of suitable human donor organs. Recent progress in genetic engineering/gene editing of donor pigs provides new opportunities to overcome rejection of xeno-islets, to improve their engraftment and insulin secretion capacity, and to reduce the risk for transmission of porcine endogenous retroviruses. This review summarizes the current issues and progress in islet xenotransplantation with special emphasis on genetically modified/gene edited donor pigs.

Recent Findings

Attempts to overcome acute rejection of xeno-islets, especially after intraportal transplantation into the liver, include the genetic elimination of specific carbohydrate antigens such as αGal, Neu5Gc, and Sd(a) for which humans and—in part—non-human primates have natural antibodies that bind to these targets leading to activation of complement and coagulation. A complementary approach is the expression of one or more human complement regulatory proteins (hCD46, hCD55, hCD59). Transgenic attempts to overcome cellular rejection of islet xenotransplants include the expression of proteins that inhibit co-stimulation of T cells. Expression of glucagon-like peptide-1 and M3 muscarinic receptors has been shown to increase the insulin secretion of virally transduced porcine islets in vitro and it will be interesting to see the effects of these modifications in transgenic pigs and islet products derived from them. Genome-wide inactivation of porcine endogenous retrovirus (PERV) integrants by mutating their pol genes using CRISPR/Cas9 is a recent approach to reduce the risk for PERV transmission by xeno-islets.

Summary

Genetic engineering/gene editing of xeno-islet donor pigs facilitated major progress towards clinical islet xenotransplantation. The required set of genetic modifications will depend on the source of islets (fetal/neonatal vs. adult), the mode of delivery (encapsulated vs. free), and the transplantation site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8. https://doi.org/10.1056/NEJM200007273430401.

    Article  CAS  PubMed  Google Scholar 

  2. Chang CA, Lawrence MC, Naziruddin B. Current issues in allogeneic islet transplantation. Curr Opin Organ Transplant. 2017;22(5):437–43. https://doi.org/10.1097/MOT.0000000000000448.

    Article  CAS  PubMed  Google Scholar 

  3. Rickels MR, Stock PG, de Koning EJP, Piemonti L, Pratschke J, Alejandro R, et al. Defining outcomes for beta-cell replacement therapy in the treatment of diabetes: a consensus report on the Igls criteria from the IPITA/EPITA opinion leaders workshop. Transpl Int. 2018;31(4):343–52. https://doi.org/10.1111/tri.13138.

    Article  CAS  PubMed  Google Scholar 

  4. Schuetz C, Anazawa T, Cross SE, Labriola L, Meier RPH, Redfield RR 3rd, et al. Beta cell replacement therapy: the next 10 years. Transplantation. 2018;102(2):215–29. https://doi.org/10.1097/TP.0000000000001937.

    Article  PubMed  Google Scholar 

  5. Ellis C, Ramzy A, Kieffer TJ. Regenerative medicine and cell-based approaches to restore pancreatic function. Nat Rev Gastroenterol Hepatol. 2017;14(10):612–28. https://doi.org/10.1038/nrgastro.2017.93.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Q, Melton DA. Pancreas regeneration. Nature. 2018;557(7705):351–8. https://doi.org/10.1038/s41586-018-0088-0.

    Article  CAS  PubMed  Google Scholar 

  7. Suchy F, Nakauchi H. Interspecies chimeras. Curr Opin Genet Dev. 2018;52:36–41. https://doi.org/10.1016/j.gde.2018.05.007.

    Article  CAS  PubMed  Google Scholar 

  8. Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DK. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation. 2015;22(1):7–19. https://doi.org/10.1111/xen.12130.

    Article  PubMed  Google Scholar 

  9. Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, et al. Pig-to-primate islet xenotransplantation: past, present, and future. Cell Transplant. 2017;26(6):925–47. https://doi.org/10.3727/096368917x694859.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Steffen A, Kiss T, Schmid J, Schubert U, Heinke S, Lehmann S et al. Production of high-quality islets from goettingen minipigs: Choice of organ preservation solution, donor pool, and optimal cold ischemia time. Xenotransplantation. 2017;24(1). https://doi.org/10.1111/xen.12284.

    Article  Google Scholar 

  11. Ellis C, Lyon JG, Korbutt GS. Optimization and scale-up isolation and culture of neonatal porcine islets: potential for clinical application. Cell Transplant. 2016;25(3):539–47. https://doi.org/10.3727/096368915x689451.

    Article  PubMed  Google Scholar 

  12. Mourad NI, Gianello PR. Xenoislets: porcine pancreatic islets for the treatment of type I diabetes. Curr Opin Organ Transplant. 2017;22(6):529–34. https://doi.org/10.1097/mot.0000000000000464.

    Article  PubMed  Google Scholar 

  13. Hassouna T, Seeberger KL, Salama B, Korbutt GS. Functional maturation and in vitro differentiation of neonatal porcine islet grafts. Transplantation. 2018. https://doi.org/10.1097/tp.0000000000002354.

    Article  Google Scholar 

  14. Jimenez-Vera E, Davies S, Phillips P, O'Connell PJ, Hawthorne WJ. Long-term cultured neonatal islet cell clusters demonstrate better outcomes for reversal of diabetes: in vivo and molecular profiles. Xenotransplantation. 2015;22(2):114–23. https://doi.org/10.1111/xen.12151.

    Article  PubMed  Google Scholar 

  15. Li WC, Chen CY, Kao CW, Huang PC, Hsieh YT, Kuo TY, et al. Porcine neonatal pancreatic cell clusters maintain their multipotency in culture and after transplantation. Sci Rep. 2018;8(1):8212. https://doi.org/10.1038/s41598-018-26404-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klymiuk N, Ludwig B, Seissler J, Reichart B, Wolf E. Current concepts of using pigs as a source for beta-cell replacement therapy of type 1 diabetes. Curr Mol Biol Rep. 2016;2(2):73–82. https://doi.org/10.1007/s40610-016-0039-1.

    Article  Google Scholar 

  17. Zhu HT, Yu L, Lyu Y, Wang B. Optimal pig donor selection in islet xenotransplantation: current status and future perspectives. J Zhejiang Univ Sci B. 2014;15(8):681–91. https://doi.org/10.1631/jzus.B1400120.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salama BF, Korbutt GS. Porcine islet xenografts: a clinical source of ss-cell grafts. Curr Diab Rep. 2017;17(3):14. https://doi.org/10.1007/s11892-017-0846-7.

    Article  PubMed  Google Scholar 

  19. Shin JS, Min BH, Kim JM, Kim JS, Yoon IH, Kim HJ, et al. Failure of transplantation tolerance induction by autologous regulatory T cells in the pig-to-non-human primate islet xenotransplantation model. Xenotransplantation. 2016;23(4):300–9. https://doi.org/10.1111/xen.12246.

    Article  PubMed  Google Scholar 

  20. Shin JS, Kim JM, Min BH, Yoon IH, Kim HJ, Kim JS et al. Pre-clinical results in pig-to-non-human primate islet xenotransplantation using anti-CD40 antibody (2C10R4)-based immunosuppression. Xenotransplantation. 2018;25(1). https://doi.org/10.1111/xen.12356.

    Article  Google Scholar 

  21. Morozov VA, Wynyard S, Matsumoto S, Abalovich A, Denner J, Elliott R. No PERV transmission during a clinical trial of pig islet cell transplantation. Virus Res. 2017;227:34–40. https://doi.org/10.1016/j.virusres.2016.08.012.

    Article  CAS  PubMed  Google Scholar 

  22. Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation. 2014;21(4):309–23. https://doi.org/10.1111/xen.12102.

    Article  PubMed  Google Scholar 

  23. Matsumoto S, Abalovich A, Wechsler C, Wynyard S, Elliott RB. Clinical benefit of islet xenotransplantation for the treatment of type 1 diabetes. EBioMedicine. 2016;12:255–62. https://doi.org/10.1016/j.ebiom.2016.08.034.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ludwig B, Ludwig S, Steffen A, Knauf Y, Zimerman B, Heinke S, et al. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. Proc Natl Acad Sci U S A. 2017;114(44):11745–50. https://doi.org/10.1073/pnas.1708420114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohrs CM, Chen C, Jahn SR, Stertmann J, Chmelova H, Weitz J, et al. Vessel network architecture of adult human islets promotes distinct cell-cell interactions in situ and is altered after transplantation. Endocrinology. 2017;158(5):1373–85. https://doi.org/10.1210/en.2016-1184.

    Article  PubMed  Google Scholar 

  26. Kemter E, Cohrs CM, Schafer M, Schuster M, Steinmeyer K, Wolf-van Buerck L, et al. INS-eGFP transgenic pigs: a novel reporter system for studying maturation, growth and vascularisation of neonatal islet-like cell clusters. Diabetologia. 2017;60(6):1152–6. https://doi.org/10.1007/s00125-017-4250-2.

    Article  CAS  PubMed  Google Scholar 

  27. Schuetz C, Markmann JF. Islet cell transplant: update on current clinical trials. Curr Transplant Rep. 2016;3(3):254–63. https://doi.org/10.1007/s40472-016-0103-z.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aigner B, Klymiuk N, Wolf E. Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression. Curr Opin Organ Transplant. 2010;15(2):201–6. https://doi.org/10.1097/MOT.0b013e328336ba4a.

    Article  PubMed  Google Scholar 

  29. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–4. https://doi.org/10.1126/science.1078942.

    Article  CAS  PubMed  Google Scholar 

  30. Mourad NI, Gianello P. Gene editing, gene therapy, and cell xenotransplantation: cell transplantation across species. Curr Transplant Rep. 2017;4(3):193–200. https://doi.org/10.1007/s40472-017-0157-6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fischer K, Kind A, Schnieke A. Assembling multiple xenoprotective transgenes in pigs. Xenotransplantation. 2018:e12431. https://doi.org/10.1111/xen.12431.

  32. Thompson P, Badell IR, Lowe M, Cano J, Song M, Leopardi F, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function. Am J Transplant. 2011;11(12):2593–602. https://doi.org/10.1111/j.1600-6143.2011.03720.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, et al. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep. 2013;3:1981. https://doi.org/10.1038/srep01981.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation. 2013;20(1):27–35. https://doi.org/10.1111/xen.12019.

    Article  PubMed  Google Scholar 

  35. Salama A, Mosser M, Leveque X, Perota A, Judor JP, Danna C, et al. Neu5Gc and alpha1-3 GAL Xenoantigen knockout does not affect Glycemia homeostasis and insulin secretion in pigs. Diabetes. 2017;66(4):987–93. https://doi.org/10.2337/db16-1060.

    Article  CAS  PubMed  Google Scholar 

  36. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation. 2015;22(3):194–202. https://doi.org/10.1111/xen.12161.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 2001;71(1):132–42.

    Article  CAS  Google Scholar 

  38. McKenzie IF, Li YQ, Xing PX, Dinatale I, Koulmanda M, Loveland BE, et al. CD46 protects pig islets from antibody but not cell-mediated destruction in the mouse. Xenotransplantation. 2003;10(6):615–21.

    Article  Google Scholar 

  39. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant. 2009;9(12):2716–26. https://doi.org/10.1111/j.1600-6143.2009.02850.x.

    Article  CAS  PubMed  Google Scholar 

  40. Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995;1(9):964–6.

    Article  CAS  Google Scholar 

  41. Hawthorne WJ, Salvaris EJ, Phillips P, Hawkes J, Liuwantara D, Burns H, et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant. 2014;14(6):1300–9. https://doi.org/10.1111/ajt.12722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mandel TE, Koulmanda M, Cozzi E, Waterworth P, Tolan M, Langford G, et al. Transplantation of normal and DAF-transgenic fetal pig pancreas into cynomolgus monkeys. Transplant Proc. 1997;29(1–2 /01):940.

    Article  CAS  Google Scholar 

  43. Fodor WL, Williams BL, Matis LA, Madri JA, Rollins SA, Knight JW, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci U S A. 1994;91(23):11153–7.

    Article  CAS  Google Scholar 

  44. Kwon DJ, Kim DH, Hwang IS, Kim DE, Kim HJ, Kim JS, et al. Generation of alpha-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res. 2017;26(1):153–63. https://doi.org/10.1007/s11248-016-9979-8.

    Article  CAS  PubMed  Google Scholar 

  45. Wuensch A, Baehr A, Bongoni AK, Kemter E, Blutke A, Baars W, et al. Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation. 2014;97(2):138–47. https://doi.org/10.1097/TP.0b013e3182a95cbc.

    Article  CAS  PubMed  Google Scholar 

  46. Iwase H, Ekser B, Hara H, Phelps C, Ayares D, Cooper DK, et al. Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation. 2014;21(1):72–83. https://doi.org/10.1111/xen.12073.

    Article  PubMed  Google Scholar 

  47. Lin CC, Ezzelarab M, Hara H, Long C, Lin CW, Dorling A, et al. Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by anti-nonGal IgG binding to porcine aortic endothelial cells. J Thromb Haemost. 2010;8(9):2001–10. https://doi.org/10.1111/j.1538-7836.2010.03950.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bottino R, Wijkstrom M, van der Windt DJ, Hara H, Ezzelarab M, Murase N, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014;14(10):2275–87. https://doi.org/10.1111/ajt.12868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, et al. Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol. 2012;52(5):958–61. https://doi.org/10.1016/j.yjmcc.2012.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee SC, Lee H, Oh KB, Hwang IS, Yang H, Park MR, et al. Production and breeding of transgenic cloned pigs expressing human CD73. Dev Reprod. 2017;21(2):157–65. https://doi.org/10.12717/dr.2017.21.2.157.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes. 2012;61(6):1527–32. https://doi.org/10.2337/db11-1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Wolf-van Buerck L, Schuster M, Oduncu FS, Baehr A, Mayr T, Guethoff S, et al. LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep. 2017;7(1):3572. https://doi.org/10.1038/s41598-017-03913-4. Local transgene expression of the immunoregulator LEA29Y by the graft induce local immuneregulation and enables free islet transplant survival without systemic immunosuppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin C, Plat M, Nerriere-Daguin V, Coulon F, Uzbekova S, Venturi E, et al. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Res. 2005;14(4):373–84.

    Article  CAS  Google Scholar 

  54. Phelps CJ, Ball SF, Vaught TD, Vance AM, Mendicino M, Monahan JA, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation. 2009;16(6):477–85. https://doi.org/10.1111/j.1399-3089.2009.00533.x.

    Article  PubMed  Google Scholar 

  55. Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, et al. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol. 2014;193(11):5751–7. https://doi.org/10.4049/jimmunol.1402059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hara H, Witt W, Crossley T, Long C, Isse K, Fan L, et al. Human dominant-negative class II transactivator transgenic pigs - effect on the human anti-pig T-cell immune response and immune status. Immunology. 2013;140(1):39–46. https://doi.org/10.1111/imm.12107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Klose R, Kemter E, Bedke T, Bittmann I, Kelsser B, Endres R, et al. Expression of biologically active human TRAIL in transgenic pigs. Transplantation. 2005;80(2):222–30.

    Article  CAS  Google Scholar 

  58. Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, et al. Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation. 2012;19(1):40–51. https://doi.org/10.1111/j.1399-3089.2011.00688.x.

    Article  PubMed  Google Scholar 

  59. Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, et al. Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation. 2018; https://doi.org/10.1111/xen.12387.

    Article  Google Scholar 

  60. Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation. 2009;87(1):35–43. https://doi.org/10.1097/TP.0b013e318191c784.

    Article  CAS  PubMed  Google Scholar 

  61. Tena A, Kurtz J, Leonard DA, Dobrinsky JR, Terlouw SL, Mtango N, et al. Transgenic expression of human CD47 markedly increases engraftment in a murine model of pig-to-human hematopoietic cell transplantation. Am J Transplant. 2014;14(12):2713–22. https://doi.org/10.1111/ajt.12918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation. 2009;16(6):522–34. https://doi.org/10.1111/j.1399-3089.2009.00556.x.

    Article  PubMed  Google Scholar 

  63. Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL, et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation. 2011;18(6):355–68. https://doi.org/10.1111/j.1399-3089.2011.00674.x.

    Article  PubMed  Google Scholar 

  64. Park SJ, Cho B, Koo OJ, Kim H, Kang JT, Hurh S, et al. Production and characterization of soluble human TNFRI-fc and human HO-1(HMOX1) transgenic pigs by using the F2A peptide. Transgenic Res. 2014;23(3):407–19. https://doi.org/10.1007/s11248-013-9780-x.

    Article  CAS  PubMed  Google Scholar 

  65. Yan JJ, Yeom HJ, Jeong JC, Lee JG, Lee EW, Cho B, et al. Beneficial effects of the transgenic expression of human sTNF-alphaR-fc and HO-1 on pig-to-mouse islet xenograft survival. Transpl Immunol. 2016;34:25–32. https://doi.org/10.1016/j.trim.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  66. Lee HS, Lee JG, Yeom HJ, Chung YS, Kang B, Hurh S, et al. The introduction of human heme oxygenase-1 and soluble tumor necrosis factor-alpha receptor type I with human IgG1 fc in porcine islets prolongs islet xenograft survival in humanized mice. Am J Transplant. 2016;16(1):44–57. https://doi.org/10.1111/ajt.13467.

    Article  CAS  PubMed  Google Scholar 

  67. Miyagawa S, Nakatsu S, Nakagawa T, Kondo A, Matsunami K, Hazama K, et al. Prevention of PERV infections in pig to human xenotransplantation by the RNA interference silences gene. J Biochem. 2005;137(4):503–8. https://doi.org/10.1093/jb/mvi059.

    Article  CAS  PubMed  Google Scholar 

  68. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation. 2008;15(1):36–45. https://doi.org/10.1111/j.1399-3089.2008.00442.x.

    Article  PubMed  Google Scholar 

  69. Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, et al. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation. 2009;16(3):164–80. https://doi.org/10.1111/j.1399-3089.2009.00525.x.

    Article  PubMed  Google Scholar 

  70. Semaan M, Kaulitz D, Petersen B, Niemann H, Denner J. Long-term effects of PERV-specific RNA interference in transgenic pigs. Xenotransplantation. 2012;19(2):112–21. https://doi.org/10.1111/j.1399-3089.2012.00683.x.

    Article  PubMed  Google Scholar 

  71. •• Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357(6357):1303–7. https://doi.org/10.1126/science.aan4187. Animals with inactivated PERVs in the pig genome were generated.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wijkstrom M, Bottino R, Iwase H, Hara H, Ekser B, van der Windt D, et al. Glucose metabolism in pigs expressing human genes under an insulin promoter. Xenotransplantation. 2015;22(1):70–9. https://doi.org/10.1111/xen.12145.

    Article  PubMed  Google Scholar 

  73. Le Bas-Bernardet S, Tillou X, Poirier N, Dilek N, Chatelais M, Devalliere J, et al. Xenotransplantation of galactosyl-transferase knockout, CD55, CD59, CD39, and fucosyl-transferase transgenic pig kidneys into baboons. Transplant Proc. 2011;43(9):3426–30. https://doi.org/10.1016/j.transproceed.2011.09.024.

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y, Stewart JM, Gunthart M, Hawthorne WJ, Salvaris EJ, O'Connell PJ, et al. Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors. Xenotransplantation. 2014;21(3):244–53. https://doi.org/10.1111/xen.12091.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu F, Liu J, Yuan Z, Qing Y, Li H, Xu K, et al. Generation of GTKO Diannan miniature pig expressing human complementary regulator proteins hCD55 and hCD59 via T2A peptide-based Bicistronic vectors and SCNT. Mol Biotechnol. 2018;60:550–62. https://doi.org/10.1007/s12033-018-0091-6.

    Article  CAS  Google Scholar 

  76. Gao H, Zhao C, Xiang X, Li Y, Zhao Y, Li Z, et al. Production of alpha1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning. J Reprod Dev. 2017;63(1):17–26. https://doi.org/10.1262/jrd.2016-079.

    Article  PubMed  Google Scholar 

  77. Fischer K, Kraner-Scheiber S, Petersen B, Rieblinger B, Buermann A, Flisikowska T, et al. Efficient production of multi-modified pigs for xenotransplantation by 'combineering', gene stacking and gene editing. Sci Rep. 2016;6:29081. https://doi.org/10.1038/srep29081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim GA, Lee EM, Jin JX, Lee S, Taweechaipaisankul A, Hwang JI, et al. Generation of CMAHKO/GTKO/shTNFRI-fc/HO-1 quadruple gene modified pigs. Transgenic Res. 2017;26(4):435–45. https://doi.org/10.1007/s11248-017-0021-6.

    Article  CAS  PubMed  Google Scholar 

  79. Martens GR, Reyes LM, Butler JR, Ladowski JM, Estrada JL, Sidner RA, et al. Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs. Transplantation. 2017;101(4):e86–92. https://doi.org/10.1097/tp.0000000000001646.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang R, Wang Y, Chen L, Wang R, Li C, Li X, et al. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/beta4GalNT2/CMAH. Acta Biomater. 2018;72:196–205. https://doi.org/10.1016/j.actbio.2018.03.055.

    Article  CAS  PubMed  Google Scholar 

  81. Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation. 2015;22(1):20–31. https://doi.org/10.1111/xen.12131.

    Article  CAS  PubMed  Google Scholar 

  82. Choi K, Shim J, Ko N, Eom H, Kim J, Lee JW, et al. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39. Transgenic Res. 2017;26(2):209–24. https://doi.org/10.1007/s11248-016-9996-7.

    Article  CAS  PubMed  Google Scholar 

  83. Kourtzelis I, Magnusson PU, Kotlabova K, Lambris JD, Chavakis T. Regulation of instant blood mediated inflammatory reaction (IBMIR) in pancreatic islet xeno-transplantation: points for therapeutic interventions. Adv Exp Med Biol. 2015;865:171–88. https://doi.org/10.1007/978-3-319-18603-0_11.

    Article  CAS  PubMed  Google Scholar 

  84. Byrne GW, McGregor CG, Breimer ME. Recent investigations into pig antigen and anti-pig antibody expression. Int J Surg. 2015;23(Pt B):223–8. https://doi.org/10.1016/j.ijsu.2015.07.724.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rayat GR, Rajotte RV, Hering BJ, Binette TM, Korbutt GS. In vitro and in vivo expression of Galalpha-(1,3)gal on porcine islet cells is age dependent. J Endocrinol. 2003;177(1):127–35.

    Article  CAS  Google Scholar 

  86. Lee W, Hara H, Ezzelarab MB, Iwase H, Bottino R, Long C, et al. Initial in vitro studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation. 2016;23(2):137–50. https://doi.org/10.1111/xen.12229.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Martin BM, Samy KP, Lowe MC, Thompson PW, Cano J, Farris AB, et al. Dual islet transplantation modeling of the instant blood-mediated inflammatory reaction. Am J Transplant. 2015;15(5):1241–52. https://doi.org/10.1111/ajt.13098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hawthorne WJ, Lew AM, Thomas HE. Genetic strategies to bring islet xenotransplantation to the clinic. Curr Opin Organ Transplant. 2016;21(5):476–83. https://doi.org/10.1097/mot.0000000000000353.

    Article  CAS  PubMed  Google Scholar 

  89. van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DK. Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation. 2007;14(4):288–97. https://doi.org/10.1111/j.1399-3089.2007.00419.x.

    Article  PubMed  Google Scholar 

  90. Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg. 2015;23(Pt B):296–300. https://doi.org/10.1016/j.ijsu.2015.07.682.

    Article  PubMed  Google Scholar 

  91. Vadori M, Cozzi E. The immunological barriers to xenotransplantation. Tissue Antigens. 2015;86(4):239–53. https://doi.org/10.1111/tan.12669.

    Article  CAS  PubMed  Google Scholar 

  92. Lunney JK, Ho CS, Wysocki M, Smith DM. Molecular genetics of the swine major histocompatibility complex, the SLA complex. Dev Comp Immunol. 2009;33(3):362–74. https://doi.org/10.1016/j.dci.2008.07.002.

    Article  CAS  PubMed  Google Scholar 

  93. Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev. 2014;258(1):241–58. https://doi.org/10.1111/imr.12152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Plege A, Borns K, Baars W, Schwinzer R. Suppression of human T-cell activation and expansion of regulatory T cells by pig cells overexpressing PD-ligands. Transplantation. 2009;87(7):975–82. https://doi.org/10.1097/TP.0b013e31819c85e8.

    Article  CAS  PubMed  Google Scholar 

  95. Plege-Fleck A, Lieke T, Romermann D, Duvel H, Hundrieser J, Buermann A, et al. Pig to rat cell transplantation: reduced cellular and antibody responses to xenografts overexpressing PD-L1. Xenotransplantation. 2014;21(6):533–42. https://doi.org/10.1111/xen.12121.

    Article  PubMed  Google Scholar 

  96. • Samy KP, Davis RP, Gao Q, Martin BM, Song M, Cano J, et al. Early barriers to neonatal porcine islet engraftment in a dual transplant model. Am J Transplant. 2018;18(4):998–1006. https://doi.org/10.1111/ajt.14601. This dual islet transplant model provides robust insights into pathomechanism of (xeno)transplant rejection due to properly control experiments comparing modified xenoislet preparations within one transplant recipient.

    Article  CAS  PubMed  Google Scholar 

  97. Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, et al. Report from IPITA-TTS opinion leaders meeting on the future of beta-cell replacement. Transplantation. 2016;100(Suppl 2):S1–44. https://doi.org/10.1097/tp.0000000000001055.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tritschler S, Theis FJ, Lickert H, Bottcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab. 2017;6(9):974–90. https://doi.org/10.1016/j.molmet.2017.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. • Mourad NI, Perota A, Xhema D, Galli C, Gianello P. Transgenic expression of glucagon-like Peptide-1 (GLP-1) and activated muscarinic receptor (M3R) significantly improves pig islet secretory function. Cell Transplant. 2017;26(5):901–11. https://doi.org/10.3727/096368916x693798. Insulin content and secretory function of pig islets can be distinctly increased by genetic modifications.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schuurman HJ. Regulatory aspects of clinical xenotransplantation. Int J Surg. 2015;23(Pt B):312–21. https://doi.org/10.1016/j.ijsu.2015.09.051.

    Article  PubMed  Google Scholar 

  101. Denner J, Mankertz A. Porcine circoviruses and xenotransplantation. Viruses 2017:9(4). https://doi.org/10.3390/v9040083.

  102. Denner J. Xenotransplantation and porcine cytomegalovirus. Xenotransplantation. 2015;22(5):329–35. https://doi.org/10.1111/xen.12180.

    Article  PubMed  Google Scholar 

  103. Denner J, Mueller NJ. Preventing transfer of infectious agents. Int J Surg. 2015;23(Pt B):306–11. https://doi.org/10.1016/j.ijsu.2015.08.032.

    Article  PubMed  Google Scholar 

  104. Denner J. Xenotransplantation and hepatitis E virus. Xenotransplantation. 2015;22(3):167–73. https://doi.org/10.1111/xen.12156.

    Article  PubMed  Google Scholar 

  105. Egerer S, Fiebig U, Kessler B, Zakhartchenko V, Kurome M, Reichart B, Kupatt C, Klymiuk N, Wolf E, Denner J, Bähr A. Early weaning completely eliminates porcine cytomegalovirus from a newly established pig donor facility for xenotransplantation. Xenotransplantation. 2018;25:e12449. https://doi.org/10.1111/xen.12449.

    Article  Google Scholar 

  106. Crossan C, O'Hara Z, Mourad N, Gianello P, Scobie L. Examining the potential for porcine-derived islet cells to harbour viral pathogens. Xenotransplantation. 2018;25(2):e12375. https://doi.org/10.1111/xen.12375.

    Article  PubMed  Google Scholar 

  107. Denner J, Tonjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev. 2012;25(2):318–43. https://doi.org/10.1128/cmr.05011-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Crossan C, Mourad NI, Smith K, Gianello P, Scobie L. Assessment of porcine endogenous retrovirus transmission across an alginate barrier used for the encapsulation of porcine islets. Xenotransplantation. 2018:e12409. https://doi.org/10.1111/xen.12409.

  109. Denner J. Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals? Retrovirology. 2018;15(1):28. https://doi.org/10.1186/s12977-018-0411-8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. • Denner J, Graham M. Xenotransplantation of islet cells: what can the non-human primate model bring for the evaluation of efficacy and safety? Xenotransplantation. 2015;22(3):231–5. https://doi.org/10.1111/xen.12169. Evidence is provided that non-human primates are of reduced value for efficacy and safety evaluation of islet xenotransplantation.

    Article  PubMed  Google Scholar 

  111. Denner J, Scobie L, Schuurman HJ. Is it currently possible to evaluate the risk posed by PERVs for clinical xenotransplantation? Xenotransplantation. 2018;25:e12403. https://doi.org/10.1111/xen.12403.

    Article  PubMed  Google Scholar 

  112. Tacke SJ, Specke V, Denner J. Differences in release and determination of subtype of porcine endogenous retroviruses produced by stimulated normal pig blood cells. Intervirology. 2003;46(1):17–24. https://doi.org/10.1159/000068120.

    Article  PubMed  Google Scholar 

  113. Dieckhoff B, Kessler B, Jobst D, Kues W, Petersen B, Pfeifer A, et al. Distribution and expression of porcine endogenous retroviruses in multi-transgenic pigs generated for xenotransplantation. Xenotransplantation. 2009;16(2):64–73. https://doi.org/10.1111/j.1399-3089.2009.00515.x.

    Article  PubMed  Google Scholar 

  114. Wilson CA. Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci. 2008;65(21):3399–412. https://doi.org/10.1007/s00018-008-8498-z.

    Article  CAS  PubMed  Google Scholar 

  115. Denner J, Specke V, Thiesen U, Karlas A, Kurth R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology. 2003;314(1):125–33.

    Article  CAS  Google Scholar 

  116. Harrison I, Takeuchi Y, Bartosch B, Stoye JP. Determinants of high titer in recombinant porcine endogenous retroviruses. J Virol. 2004;78(24):13871–9. https://doi.org/10.1128/jvi.78.24.13871-13879.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaulitz D, Mihica D, Adlhoch C, Semaan M, Denner J. Improved pig donor screening including newly identified variants of porcine endogenous retrovirus-C (PERV-C). Arch Virol. 2013;158(2):341–8. https://doi.org/10.1007/s00705-012-1490-9.

    Article  CAS  PubMed  Google Scholar 

  118. Kaulitz D, Mihica D, Dorna J, Costa MR, Petersen B, Niemann H, et al. Development of sensitive methods for detection of porcine endogenous retrovirus-C (PERV-C) in the genome of pigs. J Virol Methods. 2011;175(1):60–5. https://doi.org/10.1016/j.jviromet.2011.04.017.

    Article  CAS  PubMed  Google Scholar 

  119. Karlas A, Kurth R, Denner J. Inhibition of porcine endogenous retroviruses by RNA interference: increasing the safety of xenotransplantation. Virology. 2004;325(1):18–23. https://doi.org/10.1016/j.virol.2004.04.022.

    Article  CAS  PubMed  Google Scholar 

  120. Dieckhoff B, Karlas A, Hofmann A, Kues WA, Petersen B, Pfeifer A, et al. Inhibition of porcine endogenous retroviruses (PERVs) in primary porcine cells by RNA interference using lentiviral vectors. Arch Virol. 2007;152(3):629–34. https://doi.org/10.1007/s00705-006-0868-y.

    Article  CAS  PubMed  Google Scholar 

  121. Kaulitz D, Fiebig U, Eschricht M, Wurzbacher C, Kurth R, Denner J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology. 2011;411(1):78–86. https://doi.org/10.1016/j.virol.2010.12.032.

    Article  CAS  PubMed  Google Scholar 

  122. Waechter A, Eschricht M, Denner J. Neutralization of porcine endogenous retrovirus by antibodies against the membrane-proximal external region of the transmembrane envelope protein. J Gen Virol. 2013;94(Pt 3):643–51. https://doi.org/10.1099/vir.0.047399-0.

    Article  CAS  PubMed  Google Scholar 

  123. Denner J, Mihica D, Kaulitz D, Schmidt CM. Increased titers of neutralizing antibodies after immunization with both envelope proteins of the porcine endogenous retroviruses (PERVs). Virol J. 2012;9:260. https://doi.org/10.1186/1743-422x-9-260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Denner J. How active are porcine endogenous retroviruses (PERVs)? Viruses. 2016;8(8). https://doi.org/10.3390/v8080215.

    Article  Google Scholar 

  125. Fiebig U, Fischer K, Baehr A, Runge C, Schnieke A, Wolf E et al. Porcine endogenous retroviruses (PERV): quantification of the copy number in cell lines, pig breeds and organs. Xenotransplantation. 2018;25:e12445. https://doi.org/10.1111/xen.12445.

    Article  Google Scholar 

  126. Semaan M, Ivanusic D, Denner J. Cytotoxic effects during knock out of multiple porcine endogenous retrovirus (PERV) sequences in the pig genome by zinc finger nucleases (ZFN). PLoS One. 2015;10(4):e0122059. https://doi.org/10.1371/journal.pone.0122059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. • Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015;350(6264):1101–4. https://doi.org/10.1126/science.aad1191. Proof-of-principle study that inactivation of all PERV loci genome-wide is feasible.

    Article  CAS  PubMed  Google Scholar 

  128. Denner J. Paving the path toward porcine organs for transplantation. N Engl J Med. 2017;377(19):1891–3. https://doi.org/10.1056/NEJMcibr1710853.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Horizon2020 Program, Grant Number 760986 ‘iNanoBIT’, and by the German Research Foundation (DFG), Grant Number 213602983, TRR 127: Biology of xenogeneic cell and organ transplantation—from bench to bedside.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Wolf.

Ethics declarations

Conflict of Interest

Elisabeth Kemter, Joachim Denner, and Eckhard Wolf declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemter, E., Denner, J. & Wolf, E. Will Genetic Engineering Carry Xenotransplantation of Pig Islets to the Clinic?. Curr Diab Rep 18, 103 (2018). https://doi.org/10.1007/s11892-018-1074-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1074-5

Keywords

Navigation