Advertisement

Current Diabetes Reports

, 18:1 | Cite as

The H-Reflex as a Biomarker for Spinal Disinhibition in Painful Diabetic Neuropathy

  • Corinne Lee-Kubli
  • Andrew G. Marshall
  • Rayaz A. Malik
  • Nigel A. Calcutt
Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Neuropathy

Abstract

Purpose of Review

Neuropathic pain may arise from multiple mechanisms and locations. Efficacy of current treatments for painful diabetic neuropathy is limited to an unpredictable subset of patients, possibly reflecting diversity of pain generator mechanisms, and there is a lack of targeted treatments for individual patients. This review summarizes preclinical evidence supporting a role for spinal disinhibition in painful diabetic neuropathy, the physiology and pharmacology of rate-dependent depression (RDD) of the spinal H-reflex and the translational potential of using RDD as a biomarker of spinally mediated pain.

Recent Findings

Impaired RDD occurs in animal models of diabetes and was also detected in diabetic patients with painful vs painless neuropathy.

Summary

RDD status can be determined using standard neurophysiological equipment. Loss of RDD may provide a clinical biomarker of spinal disinhibition, thereby enabling a personalized medicine approach to selection of current treatment options and enrichment of future clinical trial populations.

Keywords

Rate-dependent depression Spinal disinhibition Neuropathic pain Diabetic neuropathy H-reflex KCC2 

Notes

Acknowledgments

This study is supported by National Institutes for Health awards DK057629 (NAC), DP3DK108245 (NAC), and DK081082 (NAC and RAM) and American Diabetes Association Award 1-17-ICTS-062 (AGM, NAC).

Compliance with Ethical Standards

Conflict of Interest

Corinne Lee-Kubli, Andrew G. Marshall, Rayaz A. Malik, and Nigel A. Calcutt declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Previously unpublished data (Fig. 1) was collected by Corinne Lee-Kubli and Nigel Calcutt using the UCSD IACUC-approved protocol S-02059R.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.  https://doi.org/10.2337/dc16-2042.PubMedCrossRefGoogle Scholar
  2. 2.
    Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011;34(10):2220–4.  https://doi.org/10.2337/dc11-1108.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Davies M, Brophy S, Williams R, Taylor A. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29(7):1518–22.  https://doi.org/10.2337/dc05-2228.PubMedCrossRefGoogle Scholar
  4. 4.
    Pruitt J 3rd, Moracho-Vilrriales C, Threatt T, Wagner S, Wu J, Romero-Sandoval EA. Identification, prevalence, and treatment of painful diabetic neuropathy in patients from a rural area in South Carolina. J Pain Res. 2017;10:833–43.  https://doi.org/10.2147/JPR.S129139.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A, Group KS. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S3. Pain Med. 2009;10(2):393–400.  https://doi.org/10.1111/j.1526-4637.2008.00555.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Baron R, Tolle TR, Gockel U, Brosz M, Freynhagen R. A cross-sectional cohort survey in 2100 patients with painful diabetic neuropathy and postherpetic neuralgia: differences in demographic data and sensory symptoms. Pain. 2009;146(1–2):34–40.  https://doi.org/10.1016/j.pain.2009.06.001.PubMedCrossRefGoogle Scholar
  7. 7.
    Finnerup NB, Sindrup SH, Jensen TS. Management of painful neuropathies. Handb Clin Neurol. 2013;115:279–90.  https://doi.org/10.1016/B978-0-444-52902-2.00017-5.CrossRefGoogle Scholar
  8. 8.
    D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008;101(1):8–16.  https://doi.org/10.1093/bja/aen088.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee-Kubli CA, Calcutt NA. Painful neuropathy: mechanisms. Handb Clin Neurol. 2014;126:533–57.  https://doi.org/10.1016/B978-0-444-53480-4.00034-5.PubMedCrossRefGoogle Scholar
  10. 10.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.  https://doi.org/10.1126/science.150.3699.971.PubMedCrossRefGoogle Scholar
  11. 11.
    Bohlhalter S, Weinmann O, Mohler H, Fritschy JM. Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci. 1996;16(1):283–97.PubMedGoogle Scholar
  12. 12.
    Roberts LA, Beyer C, Komisaruk BR. Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci. 1986;39(18):1667–74.  https://doi.org/10.1016/0024-3205(86)90164-5.PubMedCrossRefGoogle Scholar
  13. 13.
    Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol. 1994;72(1):169–79.  https://doi.org/10.1152/jn.1994.72.1.169.PubMedCrossRefGoogle Scholar
  14. 14.
    Sorkin LS, Puig S, Jones DL. Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain. 1998;77(2):181–90.  https://doi.org/10.1016/S0304-3959(98)00094-3.PubMedCrossRefGoogle Scholar
  15. 15.
    Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain. 1989;37(1):111–23.  https://doi.org/10.1016/0304-3959(89)90160-7.PubMedCrossRefGoogle Scholar
  16. 16.
    Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma. 2006;23(7):1111–24.  https://doi.org/10.1089/neu.2006.23.1111.PubMedCrossRefGoogle Scholar
  17. 17.
    Hammond DL, Drower EJ. Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol. 1984;103(1–2):121–5.  https://doi.org/10.1016/0014-2999(84)90197-3.PubMedCrossRefGoogle Scholar
  18. 18.
    Miletic G, Draganic P, Pankratz MT, Miletic V. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain. 2003;105(1–2):347–53.  https://doi.org/10.1016/S0304-3959(03)00250-1.PubMedCrossRefGoogle Scholar
  19. 19.
    Wilson PR, Yaksh TL. Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol. 1978;51(4):323–30.  https://doi.org/10.1016/0014-2999(78)90423-5.PubMedCrossRefGoogle Scholar
  20. 20.
    Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32(1):1–32.  https://doi.org/10.1146/annurev.neuro.051508.135531.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    • Prescott SA. Synaptic inhibition and disinhibition in the spinal dorsal horn. Prog Mol Biol Transl Sci. 2015;131:359–83.  https://doi.org/10.1016/bs.pmbts.2014.11.008. A clear and conscise recent review of the role of spinal disinhibition in neuropathic pain. PubMedCrossRefGoogle Scholar
  22. 22.
    Castro-Lopes JM, Tavares I, Coimbra A. GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res. 1993;620(2):287–91.  https://doi.org/10.1016/0006-8993(93)90167-L.PubMedCrossRefGoogle Scholar
  23. 23.
    Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22(15):6724–31.PubMedGoogle Scholar
  24. 24.
    Malmberg AB, O'Connor WT, Glennon JC, Cesena R, Calcutt NA. Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats. Brain Res. 2006;1115(1):48–53.  https://doi.org/10.1016/j.brainres.2006.07.077.PubMedCrossRefGoogle Scholar
  25. 25.
    Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008;140(1):48–57.  https://doi.org/10.1016/j.pain.2008.07.005.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang XL, Zhang HM, Chen SR, Pan HL. Altered synaptic input and GABAB receptor function in spinal superficial dorsal horn neurons in rats with diabetic neuropathy. J Physiol. 2007;579(Pt 3):849–61.  https://doi.org/10.1113/jphysiol.2006.126102.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wang XL, Zhang Q, Zhang YZ, Liu YT, Dong R, Wang QJ, et al. Downregulation of GABAB receptors in the spinal cord dorsal horn in diabetic neuropathy. Neurosci Lett. 2011;490(2):112–5.  https://doi.org/10.1016/j.neulet.2010.12.038.PubMedCrossRefGoogle Scholar
  28. 28.
    Morgado C, Pinto-Ribeiro F, Tavares I. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats. Neurosci Lett. 2008;438(1):102–6.  https://doi.org/10.1016/j.neulet.2008.04.032.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee-Kubli CA, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014;155(2):250–60.  https://doi.org/10.1016/j.pain.2013.10.001.PubMedCrossRefGoogle Scholar
  30. 30.
    •• Marshall AG, Lee-Kubli C, Azmi S, Zhang M, Ferdousi M, Mixcoatl-Zecuatl T, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017;66(5):1380–90.  https://doi.org/10.2337/db16-1181. The first report of impaired RDD in type 1 diabetic patients with neuropathic pain. Diabetic patients with similar neuropathy but no pain had normal RDD. Preclinical studies extended measures of impaired RDD to rat model of type 2 diabetes. PubMedCrossRefGoogle Scholar
  31. 31.
    • Javdani F, Hollo K, Hegedus K, Kis G, Hegyi Z, Docs K, et al. Differential expression patterns of K(+)/Cl(−) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. J Comp Neurol. 2015;523(13):1967–83.  https://doi.org/10.1002/cne.23774. A thorough demonstration of the exclusive localization of KCC2 to dendrites and neuronal perikarya in the spinal dorsal horn, variability of KCC2 distribution between neurons and its absence from presynaptic membranes. PubMedCrossRefGoogle Scholar
  32. 32.
    Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15(10):637–54.  https://doi.org/10.1038/nrn3819.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424(6951):938–42.  https://doi.org/10.1038/nature01868.PubMedCrossRefGoogle Scholar
  34. 34.
    • Doyon N, Prescott SA, De Koninck Y. Mild KCC2 hypofunction causes inconspicuous chloride dysregulation that degrades neural coding. Front Cell Neurosci. 2015;9:516.  https://doi.org/10.3389/fncel.2015.00516. This paper uses computer simulations to demonstrate that modest deceases in KCC2 function can impede normal neurotransmission. This finding helps address concerns that the detected reduction of spinal KCC2 protein during injury or disease was too small to produce the associated pain phenotype. PubMedGoogle Scholar
  35. 35.
    Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci. 2015;9:371.  https://doi.org/10.3389/fncel.2015.00371.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–21.  https://doi.org/10.1038/nature04223.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013;2013:429815–1.  https://doi.org/10.1155/2013/429815.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Daulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol. 2006;70(4):1246–54.  https://doi.org/10.1124/mol.106.025478.PubMedCrossRefGoogle Scholar
  39. 39.
    Morgado C, Pereira-Terra P, Cruz CD, Tavares I. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab. 2011;13(2):150–9.  https://doi.org/10.1111/j.1463-1326.2010.01333.x.PubMedCrossRefGoogle Scholar
  40. 40.
    Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia. 2008;56(4):378–86.  https://doi.org/10.1002/glia.20623.PubMedCrossRefGoogle Scholar
  41. 41.
    Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain. 2009;13(8):807–11.  https://doi.org/10.1016/j.ejpain.2008.09.010.PubMedCrossRefGoogle Scholar
  42. 42.
    Obata K, Noguchi K. BDNF in sensory neurons and chronic pain. Neurosci Res. 2006;55(1):1–10.  https://doi.org/10.1016/j.neures.2006.01.005.PubMedCrossRefGoogle Scholar
  43. 43.
    Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995;64(3):1231–7.PubMedCrossRefGoogle Scholar
  44. 44.
    McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res. 2014;39(10):1948–63.  https://doi.org/10.1007/s11064-014-1254-x.PubMedCrossRefGoogle Scholar
  45. 45.
    Zeilhofer HU, Ralvenius WT, Acuna MA. Restoring the spinal pain gate: GABA(A) receptors as targets for novel analgesics. Adv Pharmacol. 2015;73:71–96.  https://doi.org/10.1016/bs.apha.2014.11.007.PubMedCrossRefGoogle Scholar
  46. 46.
    Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16(3):302–7.  https://doi.org/10.1038/nm.2107.PubMedCrossRefGoogle Scholar
  47. 47.
    Palmieri RM, Ingersoll CD, Hoffman MA. The hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39(3):268–77.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wager EW Jr, Buerger AA. A linear relationship between H-reflex latency and sensory conduction velocity in diabetic neuropathy. Neurology. 1974;24(8):711–4.  https://doi.org/10.1212/WNL.24.8.711.PubMedCrossRefGoogle Scholar
  49. 49.
    Cliffer KD, Tonra JR, Carson SR, Radley HE, Cavnor C, Lindsay RM, et al. Consistent repeated M- and H-wave recording in the hind limb of rats. Muscle Nerve. 1998;21(11):1405–13.  https://doi.org/10.1002/(SICI)1097-4598(199811)21:11<1405::AID-MUS7>3.0.CO;2-D.PubMedCrossRefGoogle Scholar
  50. 50.
    Stanley EF. Sensory and motor nerve conduction velocities and the latency of the H reflex during growth of the rat. Exp Neurol. 1981;71(3):497–506.  https://doi.org/10.1016/0014-4886(81)90027-3.PubMedCrossRefGoogle Scholar
  51. 51.
    Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol. 2015;113(5):1598–615.  https://doi.org/10.1152/jn.00566.2014.PubMedCrossRefGoogle Scholar
  52. 52.
    Angel RW, Hofmann WW. The H reflex in normal, spastic, and rigid subjects. Arch Neurol. 1963;9:591–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Garcia-Mullin R, Mayer RF. H reflexes in acute and chronic hemiplegia. Brain. 1972;95(3):559–72.  https://doi.org/10.1093/brain/95.3.559.PubMedCrossRefGoogle Scholar
  54. 54.
    Little JW, Halar EM. H-reflex changes following spinal cord injury. Arch Phys Med Rehabil. 1985;66(1):19–22.PubMedGoogle Scholar
  55. 55.
    Taylor S, Ashby P, Verrier M. Neurophysiological changes following traumatic spinal lesions in man. J Neurol Neurosurg Psychiatry. 1984;47(10):1102–8.  https://doi.org/10.1136/jnnp.47.10.1102.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Teasdall RD, Park AM, Languth HW, Magladery JW. Electrophysiological studies of reflex activity in patients with lesions of the nervous system. II. Disclosure of normally suppressed monosynaptic reflex discharge of spinal motoneurones by lesions of lower brain-stem and spinal cord. Bull Johns Hopkins Hosp. 1952;91(4):245–56.PubMedGoogle Scholar
  57. 57.
    Reschke MF, Anderson DJ, Homick JL. Vestibulospinal reflexes as a function of microgravity. Science. 1984;225(4658):212–4.  https://doi.org/10.1126/science.6729475.PubMedCrossRefGoogle Scholar
  58. 58.
    Ashby P, Verrier M, Warsh JJ, Price KS. Spinal reflexes and the concentrations of 5-HIAA, MHPG, and HVA in lumbar cereborspinal fluid after spinal lesions in man. J Neurol Neurosurg Psychiatry. 1976;39(12):1191–200.  https://doi.org/10.1136/jnnp.39.12.1191.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Field-Fote EC, Brown KM, Lindley SD. Influence of posture and stimulus parameters on post-activation depression of the soleus H-reflex in individuals with chronic spinal cord injury. Neurosci Lett. 2006;410(1):37–41.  https://doi.org/10.1016/j.neulet.2006.09.058.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nielsen J, Petersen N, Ballegaard M, Biering-Sorensen F, Kiehn O. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Exp Brain Res. 1993;97(1):173–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Phadke CP, Thompson FJ, Kukulka CG, Nair PM, Bowden MG, Madhavan S, et al. Soleus H-reflex modulation after motor incomplete spinal cord injury: effects of body position and walking speed. J Spinal Cord Med. 2010;33(4):371–8.  https://doi.org/10.1080/10790268.2010.11689715.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Misiaszek JE. The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve. 2003;28(2):144–60.  https://doi.org/10.1002/mus.10372.PubMedCrossRefGoogle Scholar
  63. 63.
    Ho SM, Waite PM. Effects of different anesthetics on the paired-pulse depression of the h reflex in adult rat. Exp Neurol. 2002;177(2):494–502.  https://doi.org/10.1006/exnr.2002.8013.PubMedCrossRefGoogle Scholar
  64. 64.
    Ishikawa K, Ott K, Porter RW, Stuart D. Low frequency depression of the H wave in normal and spinal man. Exp Neurol. 1966;15(1):140–56.  https://doi.org/10.1016/0014-4886(66)90039-2.PubMedCrossRefGoogle Scholar
  65. 65.
    Kakinohana O, Hefferan MP, Nakamura S, Kakinohana M, Galik J, Tomori Z, et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience. 2006;141(3):1569–83.  https://doi.org/10.1016/j.neuroscience.2006.04.083.PubMedCrossRefGoogle Scholar
  66. 66.
    Lloyd DP, Wilson VJ. Reflex depression in rhythmically active monosynaptic reflex pathways. J Gen Physiol. 1957;40(3):409–26.  https://doi.org/10.1085/jgp.40.3.409.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Olsen PZ, Diamantopoulos E. Excitability of spinal motor neurones in normal subjects and patients with spasticity, Parkinsonian rigidity, and cerebellar hypotonia. J Neurol Neurosurg Psychiatry. 1967;30(4):325–31.  https://doi.org/10.1136/jnnp.30.4.325.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Mukherjee A, Chakravarty A. Spasticity mechanisms—for the clinician. Front Neurol. 2010;1:149.  https://doi.org/10.3389/fneur.2010.00149.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Matsushita A, Smith CM. Spinal cord function in postischemic rigidity in the rat. Brain Res. 1970;19(3):395–410.  https://doi.org/10.1016/0006-8993(70)90382-3.PubMedCrossRefGoogle Scholar
  70. 70.
    Trimble MH, Kukulka CG, Behrman AL. The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neurosci Lett. 1998;246(3):186–8.  https://doi.org/10.1016/S0304-3940(98)00259-6.PubMedCrossRefGoogle Scholar
  71. 71.
    Metz J, Goode DJ, Meltzer HY. Descriptive studies of H-reflex recovery curves in psychiatric patients. Psychol Med. 1980;10(3):541–8.  https://doi.org/10.1017/S0033291700047437.PubMedCrossRefGoogle Scholar
  72. 72.
    Pivik RT, Mercier L. Spinal motoneuronal excitability in hyperkinesis: H-reflex recovery function and homosynaptic depression during wakefulness. J Clin Neuropsychol. 1981;3(3):215–36.  https://doi.org/10.1080/01688638108403127.PubMedCrossRefGoogle Scholar
  73. 73.
    Sabbahi M, Etnyre B, Al-Jawayed I, Jankovic J. H-reflex recovery curves differentiate essential tremor, Parkinson’s disease, and the combination of essential tremor and Parkinson’s disease. J Clin Neurophysiol. 2002;19(3):245–51.  https://doi.org/10.1097/00004691-200206000-00008.PubMedCrossRefGoogle Scholar
  74. 74.
    Pierrot-Deseilligny E, Mazevet D. The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin. 2000;30(2):67–80.  https://doi.org/10.1016/S0987-7053(00)00062-9.PubMedCrossRefGoogle Scholar
  75. 75.
    Curtis DR, Eccles JC. Synaptic action during and after repetitive stimulation. J Physiol. 1960;150(2):374–98.  https://doi.org/10.1113/jphysiol.1960.sp006393.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Decandia M, Provini L, Taborikova H. Mechanisms of the reflex discharge depression in the spinal motoneurone during repetitive orthodromic stimulation. Brain Res. 1967;4(2):284–91.  https://doi.org/10.1016/0006-8993(67)90010-8.PubMedCrossRefGoogle Scholar
  77. 77.
    Fuortes MG, Frank K, Becker MC. Steps in the production of motoneuron spikes. J Gen Physiol. 1957;40(5):735–52.  https://doi.org/10.1085/jgp.40.5.735.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108(3):450–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Bos R, Sadlaoud K, Boulenguez P, Buttigieg D, Liabeuf S, Brocard C, et al. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A. 2013;110(1):348–53.  https://doi.org/10.1073/pnas.1213680110.PubMedCrossRefGoogle Scholar
  80. 80.
    Mayer RF, Mawdsley C. Studies in man and cat of the significance of the H wave. J Neurol Neurosurg Psychiatry. 1965;28(3):201–11.  https://doi.org/10.1136/jnnp.28.3.201.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Burke D, Gandevia SC, McKeon B. The afferent volleys responsible for spinal proprioceptive reflexes in man. J Physiol. 1983;339(1):535–52.  https://doi.org/10.1113/jphysiol.1983.sp014732.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Meinck HM. Occurrence of the H reflex and the F wave in the rat. Electroencephalogr Clin Neurophysiol. 1976;41(5):530–3.  https://doi.org/10.1016/0013-4694(76)90064-X.PubMedCrossRefGoogle Scholar
  83. 83.
    Jankowska E, Johannisson T, Lipski J. Common interneurones in reflex pathways from group 1a and 1b afferents of ankle extensors in the cat. J Physiol. 1981;310(1):381–402.  https://doi.org/10.1113/jphysiol.1981.sp013556.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jankowska E, McCrea D, Mackel R. Oligosynaptic excitation of motoneurones by impulses in group Ia muscle spindle afferents in the cat. J Physiol. 1981;316(1):411–25.  https://doi.org/10.1113/jphysiol.1981.sp013797.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Burke D, Gandevia SC, McKeon B. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol. 1984;52(3):435–48.  https://doi.org/10.1152/jn.1984.52.3.435.PubMedCrossRefGoogle Scholar
  86. 86.
    Fukushima Y, Yamashita N, Shimada Y. Facilitation of H-reflex by homonymous Ia-afferent fibers in man. J Neurophysiol. 1982;48(5):1079–88.  https://doi.org/10.1152/jn.1982.48.5.1079.PubMedCrossRefGoogle Scholar
  87. 87.
    Magladery JW. Some observations on spinal reflexes in man. Pflugers Arch Gesamte Physiol Menschen Tiere. 1955;261(4):302–21.  https://doi.org/10.1007/BF00364122.PubMedCrossRefGoogle Scholar
  88. 88.
    Gelfan S. Altered spinal motoneurons in dogs with experimental hind-lamb rigidity. J Neurophysiol. 1966;29(4):583–611.  https://doi.org/10.1152/jn.1966.29.4.583.PubMedCrossRefGoogle Scholar
  89. 89.
    Cote MP, Azzam GA, Lemay MA, Zhukareva V, Houle JD. Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury. J Neurotrauma. 2011;28(2):299–309.  https://doi.org/10.1089/neu.2010.1594.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Garrison MK, Yates CC, Reese NB, Skinner RD, Garcia-Rill E. Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: the effects of passive exercise and modafinil. Exp Neurol. 2011;227(1):104–9.  https://doi.org/10.1016/j.expneurol.2010.09.019.PubMedCrossRefGoogle Scholar
  91. 91.
    Ollivier-Lanvin K, Keeler BE, Siegfried R, Houle JD, Lemay MA. Proprioceptive neuropathy affects normalization of the H-reflex by exercise after spinal cord injury. Exp Neurol. 2010;221(1):198–205.  https://doi.org/10.1016/j.expneurol.2009.10.023.PubMedCrossRefGoogle Scholar
  92. 92.
    Reese NB, Skinner RD, Mitchell D, Yates C, Barnes CN, Kiser TS, et al. Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats. Spinal Cord. 2006;44(1):28–34.  https://doi.org/10.1038/sj.sc.3101810.PubMedCrossRefGoogle Scholar
  93. 93.
    Yates CC, Charlesworth A, Reese NB, Skinner RD, Garcia-Rill E. The effects of passive exercise therapy initiated prior to or after the development of hyperreflexia following spinal transection. Exp Neurol. 2008;213(2):405–9.  https://doi.org/10.1016/j.expneurol.2008.07.002.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cote MP, Gandhi S, Zambrotta M, Houle JD. Exercise modulates chloride homeostasis after spinal cord injury. J Neurosci. 2014;34(27):8976–87.  https://doi.org/10.1523/JNEUROSCI.0678-14.2014.PubMedCrossRefGoogle Scholar
  95. 95.
    Eccles JC, Schmidt RF, Willis WD. Presynaptic inhibition of the spinal monosynaptic reflex pathway. J Physiol. 1962;161(2):282–97.  https://doi.org/10.1113/jphysiol.1962.sp006886.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Stuart GJ, Redman SJ. The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. J Physiol. 1992;447(1):675–92.  https://doi.org/10.1113/jphysiol.1992.sp019023.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Willis WD. John Eccles’ studies of spinal cord presynaptic inhibition. Prog Neurobiol. 2006;78(3–5):189–214.  https://doi.org/10.1016/j.pneurobio.2006.02.007.PubMedCrossRefGoogle Scholar
  98. 98.
    Duke M, Advokat C. Pentobarbital-induced modulation of flexor and H-reflexes in spinal rats. Brain Res. 2000;881(2):217–21.  https://doi.org/10.1016/S0006-8993(00)02810-9.PubMedCrossRefGoogle Scholar
  99. 99.
    Kakinohana O, Hefferan MP, Miyanohara A, Nejime T, Marsala S, Juhas S, et al. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity. PLoS One. 2012;7(1):e30561.  https://doi.org/10.1371/journal.pone.0030561.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Abbruzzese G. The medical management of spasticity. Eur J Neurol. 2002;9(Suppl 1):30–4; discussion 53-61.  https://doi.org/10.1046/j.1468-1331.2002.0090s1030.x.PubMedCrossRefGoogle Scholar
  101. 101.
    Macdonell RA, Talalla A, Swash M, Grundy D. Intrathecal baclofen and the H-reflex. J Neurol Neurosurg Psychiatry. 1989;52(9):1110–2.  https://doi.org/10.1136/jnnp.52.9.1110.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lee S, Toda T, Kiyama H, Yamashita T. Weakened rate-dependent depression of Hoffmann’s reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death Dis. 2014;5(1):e1007.  https://doi.org/10.1038/cddis.2013.544.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Azouvi P, Roby-Brami A, Biraben A, Thiebaut JB, Thurel C, Bussel B. Effect of intrathecal baclofen on the monosynaptic reflex in humans: evidence for a postsynaptic action. J Neurol Neurosurg Psychiatry. 1993;56(5):515–9.  https://doi.org/10.1136/jnnp.56.5.515.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Corleto JA, Bravo-Hernandez M, Kamizato K, Kakinohana O, Santucci C, Navarro MR, et al. Thoracic 9 spinal transection-induced model of muscle spasticity in the rat: a systematic electrophysiological and histopathological characterization. PLoS One. 2015;10(12):e0144642.  https://doi.org/10.1371/journal.pone.0144642.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dachy B, Dan B. Electrophysiological assessment of the effect of intrathecal baclofen in dystonic children. Clin Neurophysiol. 2004;115(4):774–8.  https://doi.org/10.1016/j.clinph.2003.11.008.PubMedCrossRefGoogle Scholar
  106. 106.
    Liu H, Skinner RD, Arfaj A, Yates C, Reese NB, Williams K, et al. L-Dopa effect on frequency-dependent depression of the H-reflex in adult rats with complete spinal cord transection. Brain Res Bull. 2010;83(5):262–5.  https://doi.org/10.1016/j.brainresbull.2010.07.005.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yates CC, Charlesworth A, Reese NB, Ishida K, Skinner RD, Garcia-Rill E. Modafinil normalized hyperreflexia after spinal transection in adult rats. Spinal Cord. 2009;47(6):481–5.  https://doi.org/10.1038/sc.2008.154.PubMedCrossRefGoogle Scholar
  108. 108.
    Metz JT, Holcomb HH, Meltzer HY. Effect of 5-hydroxytryptophan on H-reflex recovery curves in normal subjects and patients with affective disorders. Biol Psychiatry. 1988;23(6):602–11.  https://doi.org/10.1016/0006-3223(88)90007-8.PubMedCrossRefGoogle Scholar
  109. 109.
    Ryu Y, Ogata T, Nagao M, Kitamura T, Morioka K, Ichihara Y, et al. The swimming test is effective for evaluating spasticity after contusive spinal cord injury. PLoS One. 2017;12(2):e0171937.  https://doi.org/10.1371/journal.pone.0171937.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci. 2011;33(9):1667–76.  https://doi.org/10.1111/j.1460-9568.2011.07652.x.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Xiao WH, Bennett GJ. Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-L-carnitine. Pain. 2008;135(3):262–70.  https://doi.org/10.1016/j.pain.2007.06.001.PubMedCrossRefGoogle Scholar
  112. 112.
    Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain. 1996;68(2–3):293–9.  https://doi.org/10.1016/S0304-3959(96)03201-0.PubMedCrossRefGoogle Scholar
  113. 113.
    • Jolivalt CG, Rodriguez M, Wahren J, Calcutt NA. Efficacy of a long-acting C-peptide analogue against peripheral neuropathy in streptozotocin-diabetic mice. Diabetes Obes Metab. 2015;17(8):781–8.  https://doi.org/10.1111/dom.12477. C-peptide, a product of pro-insulin processing, has neuroprotective properties in diabetic mice including preventing loss of RDD. A first demonstration that a systemically delivered therapy can protect RDD, as opposed to acute pharmacological manipulation of RDD with spinally delivered drugs. PubMedCrossRefGoogle Scholar
  114. 114.
    Sultan A, Gaskell H, Derry S, Moore RA. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: systematic review of randomised trials. BMC Neurol. 2008;8(1):29.  https://doi.org/10.1186/1471-2377-8-29.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mixcoatl-Zecuatl T, Jolivalt CG. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol. 2011;164(1):159–69.  https://doi.org/10.1111/j.1476-5381.2011.01334.x.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gozariu M, Roth V, Keime F, Le Bars D, Willer JC. An electrophysiological investigation into the monosynaptic H-reflex in the rat. Brain Res. 1998;782(1–2):343–7.  https://doi.org/10.1016/S0006-8993(97)01402-9.PubMedCrossRefGoogle Scholar
  117. 117.
    Thompson FJ, Reier PJ, Lucas CC, Parmer R. Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J Neurophysiol. 1992;68(5):1473–86.  https://doi.org/10.1152/jn.1992.68.5.1473.PubMedCrossRefGoogle Scholar
  118. 118.
    Chen X, Graham J, Dabbah MA, Petropoulos IN, Ponirakis G, Asghar O, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care. 2015;38(6):1138–44.  https://doi.org/10.2337/dc14-2422.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    De Clerck EE, Schouten JS, Berendschot TT, Kessels AG, Nuijts RM, Beckers HJ, et al. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol. 2015;3(8):653–63.  https://doi.org/10.1016/S2213-8587(15)00136-9.PubMedCrossRefGoogle Scholar
  120. 120.
    Jiang MS, Yuan Y, Gu ZX, Zhuang SL. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol. 2016;100(1):9–14.  https://doi.org/10.1136/bjophthalmol-2014-306038.PubMedCrossRefGoogle Scholar
  121. 121.
    Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56(8):2148–54.  https://doi.org/10.2337/db07-0285.PubMedCrossRefGoogle Scholar
  122. 122.
    Tavakoli M, Quattrini C, Abbott C, Kallinikos P, Marshall A, Finnigan J, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care. 2010;33(8):1792–7.  https://doi.org/10.2337/dc10-0253.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Millan-Guerrero R, Trujillo-Hernandez B, Isais-Millan S, Prieto-Diaz-Chavez E, Vasquez C, Caballero-Hoyos JR, et al. H-reflex and clinical examination in the diagnosis of diabetic polyneuropathy. J Int Med Res. 2012;40(2):694–700.  https://doi.org/10.1177/147323001204000233.PubMedCrossRefGoogle Scholar
  124. 124.
    Burke D, Adams RW, Skuse NF. The effects of voluntary contraction on the H reflex of human limb muscles. Brain. 1989;112(Pt 2):417–33.  https://doi.org/10.1093/brain/112.2.417.PubMedCrossRefGoogle Scholar
  125. 125.
    Skljarevski V, Ramadan NM. The nociceptive flexion reflex in humans—review article. Pain. 2002;96(1–2):3–8.  https://doi.org/10.1016/S0304-3959(02)00018-0.PubMedCrossRefGoogle Scholar
  126. 126.
    von Dincklage F, Olbrich H, Baars JH, Rehberg B. Habituation of the nociceptive flexion reflex is dependent on inter-stimulus interval and stimulus intensity. J Clin Neurosci. 2013;20(6):848–50.  https://doi.org/10.1016/j.jocn.2012.07.013.CrossRefGoogle Scholar
  127. 127.
    Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153(6):1193–8.  https://doi.org/10.1016/j.pain.2012.02.021.PubMedCrossRefGoogle Scholar
  128. 128.
    Todorovic SM. Painful diabetic neuropathy: prevention or suppression? Int Rev Neurobiol. 2016;127:211–25.  https://doi.org/10.1016/bs.irn.2016.03.005.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Corinne Lee-Kubli
    • 1
  • Andrew G. Marshall
    • 2
    • 3
  • Rayaz A. Malik
    • 2
    • 4
  • Nigel A. Calcutt
    • 5
  1. 1.The Salk Institute for Biological SciencesLa JollaUSA
  2. 2.Faculty of Medical and Human Sciences, Institute of Cardiovascular SciencesUniversity of Manchester and National Institute for Healthy Research/Wellcome Trust Clinical Research FacilityManchesterUK
  3. 3.Department of Clinical Neurophysiology, Salford Royal Hospital, National Health Service Foundation TrustManchester Academic Health Science CentreManchesterUK
  4. 4.Department of MedicineWeill Cornell Medicine-QatarDohaQatar
  5. 5.Department of PathologyUniversity of California San DiegoLa JollaUSA

Personalised recommendations