Current Diabetes Reports

, 17:112 | Cite as

Treatment of Dyslipidemia in Diabetes: Recent Advances and Remaining Questions

Macrovascular Complications in Diabetes (VR Aroda and A Getaneh, Section Editors)
  • 351 Downloads
Part of the following topical collections:
  1. Topical Collection on Macrovascular Complications in Diabetes

Abstract

Purpose of Review

This article reviews current knowledge concerning diabetic dyslipidemia and cardiovascular disease (CVD). It reviews strategies to reduce diabetes-associated CVD, including reducing low-density lipoprotein levels, lowering triglycerides, and increasing high-density lipoproteins (HDL). Special considerations, such as the multifactorial chylomicronemia syndrome and partial lipodystrophy, and the role of glucose-lowering strategies in the management of diabetic dyslipidemia are discussed.

Recent Findings

The strongest evidence to date for reducing CVD in diabetes comes from the use of statins. While triglyceride lowering remains inconclusive, an ongoing trial might provide some finality to this question. The role of increasing HDL remains elusive, and HDL cholesterol appears to be an unsatisfactory metric for monitoring therapy.

Summary

The use of statins offers the best current way to reduce diabetes-associated CVD. However, several novel and promising approaches for the management of diabetic dyslipidemia aimed at reducing CVD are in the pipeline.

Keywords

Metabolic syndrome Atherosclerosis Low-density lipoproteins Triglycerides High-density lipoproteins Statins 

Notes

Compliance with Ethical Standards

Conflict of Interest

Alan Chait reports personal fees from Ionis Pharmaceuticals and Merck.

Ira Goldberg reports personal fees from Ionis Pharmaceuticals, Amgen, Merck, and Sanofi/Regeneron.

Human and Animal Rights and Informed Consent

This article contains some studies with human subjects performed by the authors. Informed consent was obtained from all individual participants included in those studies.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Emerging Risk Factors C, Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.CrossRefGoogle Scholar
  2. 2.
    Livingstone SJ, Levin D, Looker HC, Lindsay RS, Wild SH, Joss N, et al. Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. JAMA. 2015;313(1):37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Morimoto A, Onda Y, Nishimura R, Sano H, Utsunomiya K, Tajima N, et al., Diabetes Epidemiology Research International Mortality Study G. Cause-specific mortality trends in a nationwide population-based cohort of childhood-onset type 1 diabetes in Japan during 35 years of follow-up: the DERI Mortality Study. Diabetologia. 2013;56(10):2171–5.Google Scholar
  4. 4.
    Miller RG, Secrest AM, Ellis D, Becker DJ, Orchard TJ. Changing impact of modifiable risk factors on the incidence of major outcomes of type 1 diabetes: the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care. 2013;36(12):3999–4006.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Terry T, Raravikar K, Chokrungvaranon N, Reaven PD. Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? Insights from ACCORD, ADVANCE, and VADT. Curr Cardiol Rep. 2012;14(1):79–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Brown A, Reynolds LR, Bruemmer D. Intensive glycemic control and cardiovascular disease: an update. Nat Rev Cardiol. 2010;7(7):369–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther. 2016;7(2):203–19.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;Google Scholar
  10. 10.
    Reaven PD, Moritz TE, Schwenke DC, Anderson RJ, Criqui M, Detrano R, et al. Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes. 2009;58(11):2642–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brown WV, Clark L, Falko JM, Guyton JR, Rees TJ, Schonfeld G, et al. Optimal management of lipids in diabetes and metabolic syndrome. J Clin Lipidol. 2008;2(5):335–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Gowri MS, Van der Westhuyzen DR, Bridges SR, Anderson JW. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may be due to the abnormal composition of HDL. Arterioscler Thromb Vasc Biol. 1999;19(9):2226–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Garvey WT, Kwon S, Zheng D, Shaughnessy S, Wallace P, Hutto A, et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes. 2003;52(2):453–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Ginsberg HN, Illingworth DR. Postprandial dyslipidemia: an atherogenic disorder common in patients with diabetes mellitus. Am J Cardiol. 2001;88(6A):9H–15H.CrossRefPubMedGoogle Scholar
  15. 15.
    Ginsberg HN. Diabetic dyslipidemia: basic mechanisms underlying the common hypertriglyceridemia and low HDL cholesterol levels. Diabetes. 1996;45(Suppl 3):S27–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Goldberg IJ. Clinical review 124: diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86(3):965–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Eckel RH, Albers JJ, Cheung MC, Wahl PW, Lindgren FT, Bierman EL. High density lipoprotein composition in insulin-dependent diabetes mellitus. Diabetes. 1981;30:132–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Durrington PN. Serum high density lipoprotein cholesterol in diabetes mellitus: an analysis of factors which influence its concentration. Clin Chim Acta. 1980;104(1):11–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Soedamah-Muthu SS, Vergouwe Y, Costacou T, Miller RG, Zgibor J, Chaturvedi N, et al. Predicting major outcomes in type 1 diabetes: a model development and validation study. Diabetologia. 2014;57(11):2304–14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Costacou T, Evans RW, Orchard TJ. High-density lipoprotein cholesterol in diabetes: is higher always better? J Clin Lipidol. 2011;5(5):387–94.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008;371(9626):1800–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Heart Protection Study Collaborative G. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22.CrossRefGoogle Scholar
  23. 23.
    Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.CrossRefPubMedGoogle Scholar
  24. 24.
    Cholesterol Treatment Trialists C, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.CrossRefGoogle Scholar
  25. 25.
    Preiss D, Sattar N. Statins and the risk of new-onset diabetes: a review of recent evidence. Curr Opin Lipidol. 2011;22(6):460–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5(2):97–105.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    • Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22. This is the first paper to demonstrate a reduction in CVD events with a PCSK9 inhibitor Google Scholar
  28. 28.
    Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313(10):1029–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Brunetti L, DeSantis EH. Patient tolerance and acceptance of colesevelam hydrochloride: focus on type-2 diabetes mellitus. P T. 2015;40(1):62–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Denke MA, Grundy SM. Hypertriglyceridemia: a relative contraindication to the use of bile acid-binding resins? Hepatology. 1988;8(4):974–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, et al. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A. 2005;102(23):8132–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gagne C, Bays HE, Weiss SR, Mata P, Quinto K, Melino M, et al. Efficacy and safety of ezetimibe added to ongoing statin therapy for treatment of patients with primary hypercholesterolemia. Am J Cardiol. 2002;90(10):1084–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Bays HE, Moore PB, Drehobl MA, Rosenblatt S, Toth PD, Dujovne CA, et al. Effectiveness and tolerability of ezetimibe in patients with primary hypercholesterolemia: pooled analysis of two phase II studies. Clin Ther. 2001;23(8):1209–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015.Google Scholar
  35. 35.
    Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta- analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3(2):213–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31(8):1716–25.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Koskinen P, Mänttäri M, Manninen V, Huttunen J, Heinonon O. Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diab Care. 1992;15:825–9.CrossRefGoogle Scholar
  40. 40.
    Group AS, Ginsberg HN, Elam MB, Lovato LC, Crouse JR III, Leiter LA, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.CrossRefGoogle Scholar
  41. 41.
    Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Bezafibrate Infarction Prevention s. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation. 2000;102(1):21–7.CrossRefGoogle Scholar
  43. 43.
    Camejo G. Phase 2 clinical trials with K-877 (pemafibrate): a promising selective PPAR-alpha modulator for treatment of combined dyslipidemia. Atherosclerosis. 2017;261:163–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, et al. Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol. 1986;8(6):1245–55.CrossRefPubMedGoogle Scholar
  45. 45.
    Investigators A-H. The role of niacin in raising high-density lipoprotein cholesterol to reduce cardiovascular events in patients with atherosclerotic cardiovascular disease and optimally treated low-density lipoprotein cholesterol rationale and study design. The Atherothrombosis Intervention in Metabolic syndrome with low HDL/high triglycerides: Impact on Global Health outcomes (AIM-HIGH). Am Heart J. 2011;161(3):471–7. e2CrossRefGoogle Scholar
  46. 46.
    Group HTC, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.CrossRefGoogle Scholar
  47. 47.
    Saito Y, Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Ishikawa Y, et al. Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS). Atherosclerosis. 2008;200(1):135–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Rice HB, Bernasconi A, Maki KC, Harris WS, von Schacky C, Calder PC. Conducting omega-3 clinical trials with cardiovascular outcomes: proceedings of a workshop held at ISSFAL 2014. Prostaglandins Leukot Essent Fatty Acids. 2016;107:30–42.CrossRefPubMedGoogle Scholar
  49. 49.
    Moore AF, Jablonski KA, McAteer JB, Saxena R, Pollin TI, Franks PW, et al. Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program. Diabetes. 2008;57(9):2503–10.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, Angelica Merlini P, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537):102–6.CrossRefPubMedGoogle Scholar
  51. 51.
    TG, HDL Working Group of the Exome Sequencing Project NHL, Blood I, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014;371(1):22–31.Google Scholar
  52. 52.
    •• Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47. This paper demonstrates a new method for treating hypertriglyceridemia, which may be of value in treating patients whose triglyceride values are resistant to current therapeutic modalities Google Scholar
  53. 53.
    Digenio A, Dunbar RL, Alexander VJ, Hompesch M, Morrow L, Lee RG, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39(8):1408–15.CrossRefPubMedGoogle Scholar
  54. 54.
    Appel GB, Blum CB, Chien S, Kunis CL, Appel AS. The hyperlipidemia of the nephrotic syndrome. Relation to plasma albumin concentration, oncotic pressure and viscosity. N Engl J Med. 1985;312:1544–8.CrossRefPubMedGoogle Scholar
  55. 55.
    deGoma EM, deGoma RL, Rader DJ. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. 2008;51(23):2199–211.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Haase CL, Tybjaerg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97(2):E248–56.CrossRefPubMedGoogle Scholar
  57. 57.
    Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351(6278):1166–71.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.CrossRefPubMedGoogle Scholar
  59. 59.
    Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Heinecke JW. The not-so-simple HDL story: a new era for quantifying HDL and cardiovascular risk? Nat Med. 2012;18(9):1346–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Rader DJ, Tall AR. The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis? Nat Med. 2012;18(9):1344–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012;32(12):2813–20.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Voyiaziakis E, Goldberg IJ, Plump AS, Rubin EM, Breslow JL, Huang LS. ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice. J Lipid Res. 1998;39(2):313–21.PubMedGoogle Scholar
  65. 65.
    Hughes SD, Verstuyft J, Rubin EM. HDL deficiency in genetically engineered mice requires elevated LDL to accelerate atherogenesis. Arterioscler Thromb Vasc Biol. 1997;17(9):1725–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1994;91:9607–11.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    P'aszty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest. 1994, 94:899–903.Google Scholar
  68. 68.
    Abello J, Ye F, Bosshard A, Bernard C, Cuber J-C, Chayvialle J-A. Stimulation of glucagon-like peptide-1 secretion by muscarinic agonist in a murine intestinal endocrine cell line. Endocrinology. 1994;134:2011–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4.CrossRefPubMedGoogle Scholar
  70. 70.
    Buse JB, Tan MH, Prince MJ, Erickson PP. The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes Obes Metab. 2004;6(2):133–56.CrossRefPubMedGoogle Scholar
  71. 71.
    Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007;147(6):386–99.CrossRefPubMedGoogle Scholar
  72. 72.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65.Google Scholar
  73. 73.
    Chaudhuri A, Dandona P. Effects of insulin and other antihyperglycaemic agents on lipid profiles of patients with diabetes. Diabetes Obes Metab. 2011;13(10):869–79.CrossRefPubMedGoogle Scholar
  74. 74.
    Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15(11):1040–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Bandsma RH, Lewis GF. Newly appreciated therapeutic effect of GLP-1 receptor agonists: reduction in postprandial lipemia. Atherosclerosis. 2010;212(1):40–1.CrossRefPubMedGoogle Scholar
  76. 76.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Freed MI, Ratner R, Marcovina SM, Kreider MM, Biswas N, Cohen BR, Brunzell JD, and Rosiglitazone Study i. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 2002;90(9):947–952.Google Scholar
  78. 78.
    Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK, Skene AM, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study. J Am Coll Cardiol. 2007;49(17):1772–80.CrossRefPubMedGoogle Scholar
  79. 79.
    Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321–31.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ptaszynska A, Hardy E, Johnsson E, Parikh S, List J. Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med. 2013;125(3):181–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Fulcher G, Matthews DR, Perkovic V, de Zeeuw D, Mahaffey KW, Mathieu C, et al. Efficacy and safety of canagliflozin when used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2016;18(1):82–91.CrossRefPubMedGoogle Scholar
  82. 82.
    Briand F, Mayoux E, Brousseau E, Burr N, Urbain I, Costard C, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes. 2016;65(7):2032–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–94.CrossRefPubMedGoogle Scholar
  84. 84.
    • Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. This paper was the first to show an unexpected reduction in CVD events and mortality from the use of a SGTL2 inhibitor. A more recent study that demonstrated a similar outcome with another member of this class of drugs suggests that this benefit is a class effect Google Scholar
  85. 85.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;Google Scholar
  86. 86.
    Monami M, Lamanna C, Desideri CM, Mannucci E. DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther. 2012;29(1):14–25.CrossRefPubMedGoogle Scholar
  87. 87.
    Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.CrossRefPubMedGoogle Scholar
  88. 88.
    White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.CrossRefPubMedGoogle Scholar
  89. 89.
    Chait A, Robertson HT, Brunzell JD. Chylomicronemia syndrome in diabetes mellitus. Diabetes Care. 1981;4:343–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Chait A, Brunzell JD. Severe hypertriglyceridemia: role of familial and acquired disorders. Metabolism. 1983;32:209–14.CrossRefPubMedGoogle Scholar
  91. 91.
    Hegele RA, Cao H, Anderson CM, Hramiak IM. Heterogeneity of nuclear lamin A mutations in Dunnigan-type familial partial lipodystrophy. J Clin Endocrinol Metab. 2000;85(9):3431–5.PubMedGoogle Scholar
  92. 92.
    Garg A, Vinaitheerthan M, Weatherall PT, Bowcock AM. Phenotypic heterogeneity in patients with familial partial lipodystrophy (Dunnigan variety) related to the site of missense mutations in lamin a/c gene. J Clin Endocrinol Metab. 2001;86(1):59–65.PubMedGoogle Scholar
  93. 93.
    Herbst KL, Tannock LR, Deeb SS, Purnell JQ, Brunzell JD, Chait A. Kobberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care. 2003;26(6):1819–24.CrossRefPubMedGoogle Scholar
  94. 94.
    Al-Shali KZ, Hegele RA. Laminopathies and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(9):1591–5.CrossRefPubMedGoogle Scholar
  95. 95.
    Purnell JQ, Hokanson JE, Marcovina SM, Cleary PA, Steffes MW, Brunzell JD. Weight gain accompanying intensive diabetes therapy in type 1 diabetes is associated with higher levels of dense LDL cholesterol. JInvestMed. 1996;44:180A.Google Scholar
  96. 96.
    Carr MC, Hokanson JE, Zambon A, Deeb SS, Barrett PHR, Purnell JQ, et al. The contribution of intra-abdominal fat to gender differences in hepatic lipase activity and LDL/HDL heterogeneity. J Clin Endo Metab. 2001;86:2831–7.Google Scholar
  97. 97.
    Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376(15):1430–40.CrossRefPubMedGoogle Scholar
  98. 98.
    Pinkosky SL, Filippov S, Srivastava RA, Hanselman JC, Bradshaw CD, Hurley TR, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res. 2013;54(1):134–51.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Gutierrez MJ, Rosenberg NL, Macdougall DE, Hanselman JC, Margulies JR, Strange P, et al. Efficacy and safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(3):676–83.CrossRefPubMedGoogle Scholar
  100. 100.
    Thompson PD, Rubino J, Janik MJ, MacDougall DE, McBride SJ, Margulies JR, et al. Use of ETC-1002 to treat hypercholesterolemia in patients with statin intolerance. J Clin Lipidol. 2015;9(3):295–304.CrossRefPubMedGoogle Scholar
  101. 101.
    Nissen SE, Dent-Acosta RE, Rosenson RS, Stroes E, Sattar N, Preiss D, et al. Comparison of PCSK9 inhibitor evolocumab vs ezetimibe in statin-intolerant patients: design of the Goal Achievement After Utilizing an Anti-PCSK9 Antibody in Statin-Intolerant Subjects 3 (GAUSS-3) Trial. Clin Cardiol. 2016;39(3):137–44.CrossRefPubMedGoogle Scholar
  102. 102.
    Yang X, Lee SR, Choi YS, Alexander VJ, Digenio A, Yang Q, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57(4):706–13.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;Google Scholar
  104. 104.
    Emerging Risk Factors C, Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23.CrossRefGoogle Scholar
  105. 105.
    Kronenberg F. Causes and consequences of lipoprotein(a) abnormalities in kidney disease. Clin Exp Nephrol. 2014;18(2):234–7.CrossRefPubMedGoogle Scholar
  106. 106.
    Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langslet G, Bays H, et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol. 2014;63(13):1278–88.CrossRefPubMedGoogle Scholar
  107. 107.
    Graham MJ, Viney N, Crooke RM, Tsimikas S. Antisense inhibition of apolipoprotein (a) to lower plasma lipoprotein (a) levels in humans. J Lipid Res. 2016;57(3):340–51.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368(6):503–12.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of Metabolism, Endocrinology and NutritionUniversity of WashingtonSeattleUSA
  2. 2.Division of EndocrinologyNew York UniversityNew YorkUSA

Personalised recommendations