Current Diabetes Reports

, 17:102 | Cite as

Metabolomics of Diabetic Retinopathy

  • Gerald Liew
  • Zhou Lei
  • Gavin Tan
  • Nichole Joachim
  • I-Van Ho
  • Tien Y. Wong
  • Paul Mitchell
  • Bamini Gopinath
  • Ben Crossett
Microvascular Complications—Retinopathy (JK Sun and PS Silva, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Retinopathy


Purpose of Review

Metabolomics is the study of dysregulated metabolites in biological materials. We reviewed the use of the technique to elucidate the genetic and environmental factors that contribute to the development of diabetic retinopathy.

Recent Findings

With regard to metabolomic studies of diabetic retinopathy, the field remains in its infancy with few studies published to date and little replication of results. Vitreous and serum samples are the main tissues examined, and dysregulation in pathways such as the pentose phosphate pathway, arginine to proline pathway, polyol pathway, and ascorbic acidic pathways have been reported.


Few studies have examined the metabolomic underpinnings of diabetic retinopathy. Further research is required to replicate findings to date and determine longitudinal associations with disease.


Diabetic retinopathy Metabolomics Metabonomic Blood Arginine Ascorbic acid 



NHMRC Early Career Fellowship Grant APP1073530 to Gerald Liew

Compliance with Ethical Standards

Conflict of Interest

Gerald Liew, Zhou Lei, Nichole Joachim, I-Van Ho, Tien Y. Wong, Paul Mitchell, Bamini Gopinath, and Ben Crossett declare that they have no conflict of interest.

Gavin Tan reports being on the Advisory board for Novartis, travel support from Bayer, research support from Santen, speaker for Abbott Medical, and speaker and travel support from Allergan.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. 1.
    Diabetes: facts and figures. 2017. (
  2. 2.
    Kuo JZ, Wong TY, Rotter JI. Challenges in elucidating the genetics of diabetic retinopathy. JAMA Ophthalmol. 2014;132:96–107.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    • Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol BioSyst. 2016;12:1090–105. This review provides a comprehensive survey of new results in metabolomic experiments and diabetic complications CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53. This study provides a good description of metabolomic techniques and relationship to diabetes CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123:4309–17.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLoS Med. 2016;13:e1002179.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121:1402–11.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002;51:599–605.CrossRefPubMedGoogle Scholar
  12. 12.
    Anderson SG, Dunn WB, Banerjee M, Brown M, Broadhurst DI, Goodacre R, et al. Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS One. 2014;9:e103217.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    • Chen L, Cheng CY, Choi H, Ikram MK, Sabanayagam C, Tan GS, et al. Plasma Metabonomic profiling of diabetic retinopathy. Diabetes. 2016;65:1099–108. One of the first studies using robust metabolomics techniques to study diabetic retinopathy CrossRefPubMedGoogle Scholar
  14. 14.
    Li X, Luo X, Lu X, Duan J, Xu G. Metabolomics study of diabetic retinopathy using gas chromatography-mass spectrometry: a comparison of stages and subtypes diagnosed by Western and Chinese medicine. Mol BioSyst. 2011;7:2228–37.CrossRefPubMedGoogle Scholar
  15. 15.
    Paris LP, Johnson CH, Aguilar E, Usui Y, Cho K, Hoang LT, et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 2016;12:15.CrossRefPubMedGoogle Scholar
  16. 16.
    Barba I, Garcia-Ramirez M, Hernandez C, Alonso MA, Masmiquel L, Garcia-Dorado D, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR-based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci. 2010;51:4416–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Young SP, Nessim M, Falciani F, Trevino V, Banerjee SP, Scott RA, et al. Metabolomic analysis of human vitreous humor differentiates ocular inflammatory disease. Mol Vis. 2009;15:1210–7.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006;91:439–46.CrossRefPubMedGoogle Scholar
  19. 19.
    Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25:397–424.CrossRefPubMedGoogle Scholar
  20. 20.
    Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci. 2006;26:2862–70.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Narayanan SP, Xu Z, Putluri N, Sreekumar A, Lemtalsi T, Caldwell RW, et al. Arginase 2 deficiency reduces hyperoxia-mediated retinal neurodegeneration through the regulation of polyamine metabolism. Cell Death Dis. 2014;5:e1075.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Narayanan SP, Rojas M, Suwanpradid J, Toque HA, Caldwell RW, Caldwell RB. Arginase in retinopathy. Prog Retin Eye Res. 2013;36:260–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288:831–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Kador PF. The role of aldose reductase in the development of diabetic complications. Med Res Rev. 1988;8:325–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Tokuda K, Zorumski CF, Izumi Y. Effects of ascorbic acid on UV light-mediated photoreceptor damage in isolated rat retina. Exp Eye Res. 2007;84:537–43.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest Ophthalmol Vis Sci. 2004;45:1232–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Minamizono A, Tomi M, Hosoya K. Inhibition of dehydroascorbic acid transport across the rat blood-retinal and -brain barriers in experimental diabetes. Biol Pharm Bull. 2006;29:2148–50.CrossRefPubMedGoogle Scholar
  29. 29.
    Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2006;103:11300–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ashino H, Shimamura M, Nakajima H, Dombou M, Kawanaka S, Oikawa T, et al. Novel function of ascorbic acid as an angiostatic factor. Angiogenesis. 2003;6:259–69.CrossRefPubMedGoogle Scholar
  31. 31.
    Sinclair AJ, Girling AJ, Gray L, Le GC, Lunec J, Barnett AH. Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia. 1991;34:171–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Gerald Liew
    • 1
    • 2
  • Zhou Lei
    • 3
  • Gavin Tan
    • 3
  • Nichole Joachim
    • 1
  • I-Van Ho
    • 2
    • 4
    • 5
  • Tien Y. Wong
    • 3
  • Paul Mitchell
    • 1
  • Bamini Gopinath
    • 1
  • Ben Crossett
    • 6
  1. 1.Centre for Vision Research, Westmead Millennium Institute of Medical ResearchUniversity of SydneySydneyAustralia
  2. 2.South West Retina, Retina AssociatesSydneyAustralia
  3. 3.Duke-NUS School of MedicineNational University of SingaporeSingaporeSingapore
  4. 4.Save Sight InstituteUniversity of SydneySydneyAustralia
  5. 5.Australian School of Advanced MedicineMacquarie UniversitySydneyAustralia
  6. 6.Mass Spectrometry Core Facility, Building D17University of SydneySydneyAustralia

Personalised recommendations