Current Diabetes Reports

, 17:105 | Cite as

Modulation of Type 1 Diabetes Risk by the Intestinal Microbiome

  • Mikael Knip
  • Jarno Honkanen
Therapies and New Technologies in the Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Therapies and New Technologies in the Treatment of Type 1 Diabetes


Purpose of Review

The purpose of this review is to summarize potential modulations of the intestinal microbiome aimed at preventing or delaying progression to overt type 1 diabetes in the light of recently identified perturbations of the gut microbiota associated with the development of type 1 diabetes.

Recent Findings

Accumulated data suggest that the gut microbiota is involved at two different steps in the evolution of type 1 diabetes. At the first step, the intestinal tract is colonized by a microbial community unable to provide an adequate education of the immune system. As a consequence, the infant acquires susceptibility to immune-mediated diseases, type 1 diabetes included. At the other step, the young child seroconverts to positivity for diabetes-associated autoantibodies. This is preceded or accompanied by a decrease in the diversity of the intestinal microbiota and an increased abundance of Bacteroides species. These changes will affect the disease process promoting progression toward overt type 1 diabetes.


By providing specific probiotics, one can affect the colonization of the intestinal tract in the newborn infant or strengthen the immune education in early life. Human milk oligosaccharides function as nutrients for “healthy” bacteria. Dietary interventions applying modified starches can influence the numbers and activities of both autoreactive and regulatory T cells and provide protection against autoimmune diabetes in non-obese diabetic mice. Modulation of the intestinal microbiome holds the promise of effective protection against human type 1 diabetes.


Type 1 diabetes Microbiome Microbiota Prebiotics Probiotics Diet 



Research that is relevant for this review is and has been supported by the following grants: Juvenile Diabetes Research Foundation International (grants 4-1998-274, 4-1999-731, 4-2001-435), European Union (grant BMH4-CT98-3314), Novo Nordisk Foundation, Academy of Finland (Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012-2017, Decision No. 250114), Special Research Funds for University Hospitals in Finland, Sigrid Juselius Foundation, Finska Läkaresällskapet, and Medicinska understösföreningen Liv och Hälsa.

Compliance with Ethical Standards

Conflict of Interest

Mikael Knip and Jarno Honkanen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The studies included in this review involving human participants and performed by any of the authors have been approved by the appropriate institutional research ethics committee and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments. Informed consent was obtained from all individual participants included in the studies or from their guardians if the participant was a minor.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Knip M, Korhonen S, Kulmala P, et al. Prediction of type 1 diabetes in the general population. Diabetes Care. 2010;(33, 6):1206–12.Google Scholar
  2. 2.
    Ilonen J, Hammais A, Laine A-P, et al. Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes. 2013;62(10):3636–40.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Krischer JP, Lynch KF, Schatz DA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Knip M, Simell O. Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(7):a007690.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Knip M. Pathogenesis of type 1 diabetes: implications for incidence trends. Horm. Res. 2011;76(Suppl. 1):57–64.Google Scholar
  6. 6.
    Harjutsalo V, Sund R, Knip M, Groop PH. Incidence of type 1 diabetes in Finland. JAMA. 2013;310(4):427–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Bach JF, Chatenoud L. The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb Perspect Med. 2012;2(2):a007799.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160(1):1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nature Rev Endocrinol. 2016;12(3):154–67.CrossRefGoogle Scholar
  10. 10.
    von Hertzen L, Beutler B, Bienenstock J, et al. Helsinki alert of biodiversity and health. Ann Med. 2015;47(3):218–25.CrossRefGoogle Scholar
  11. 11.
    Quercia S, Candela M, Giuliani C, et al. From lifetime to evolution: timescales of human gut microbiota adaptation. Front Microbiol. 2014;5:587.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7485):220–30.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2012;12(1):9–23.Google Scholar
  16. 16.
    Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.CrossRefPubMedGoogle Scholar
  17. 17.
    Garn H, Neves JF, Blumberg RS, Renz H. Effect of barrier microbes on organ based inflammation. J Allergy Clin Immunol. 2013;131(6):1465–78.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    West CE, Jenmalm MC, Prescott SL. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy. 2015;45(1):43–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Giongo A, Mukherjee N, Gano KA, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5(1):82–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Kupila A, Muona P, Ronkainen M, et al. Genetic risk determines the emergence of diabetes-associated autoantibodies in young children. Diabetes. 2002;51:646–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6(10):e25792.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Knip M, Virtanen SM, Seppä K, et al. Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med. 2010;363(20):1900–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vaarala O, Ilonen J, Ruohtula T, et al. Removal of bovine insulin from cow’s milk formula and early initiation of beta-cell autoimmunity in the FINDIA pilot study. Arch Pediatr Adolesc Med. 2012;166(7):608–14.CrossRefPubMedGoogle Scholar
  24. 24.
    de Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62(4):1238–44.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hummel S, Pflüger M, Hummel M, et al. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care. 2011;34(6):1301–5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Endesfelder D, Zu Castell W, Ardissone A, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 2014;63(6)2006–2014.Google Scholar
  27. 27.
    Davis-Richardson A, Ardissone A, Dias R, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol. 2014;5:678.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leonard MT, Davis-Richardson AG, Ardissone AN, et al. The methylome of the gut microbiome: a disparate Dam methylation patterns in intestinal Bacteroides dorei. Front Microbiol. 2014;5:361.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kallionpää H, Laajala E, Öling V, et al. The standard of hygiene and immune adaptation in newborn infants. Clin Immunol. 2014;155(1):136–47.CrossRefPubMedGoogle Scholar
  30. 30.
    •• Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host & Microbe. 2015;17(2):260–73. This observational study found that progression to type 1 diabetes was associated with a decreased microbial diversity and spikes in inflammation-favoring organisms, but these changes emerged after the appearance of β cell autoimmunity. Google Scholar
  31. 31.
    Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes. 2015;64(10):3510–20.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mejía-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG, de la Barca AM. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 2014;4:3814.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    de Goffau MC, Fuentes S, van den Bogert B, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57(8):1569–77.CrossRefPubMedGoogle Scholar
  36. 36.
    •• Vatanen T, Kostic AD, d’Hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–53. This observational study provides information on the immune education in Russian and Finnish infants. In Finnish infants, the lipopolysaccharide (LPS) exposure arose primarily from Bacteroides , whereas Eschericia coli was the main source for LPS in Russian infants. The latter LPS stimulated the immune system strongly in contrast to the Bacteroides- derived LPS, which even inhibited the E. coli LPS. Google Scholar
  37. 37.
    Kondrashova A, Reunanen A, Romanov A, et al. A sixfold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med. 2005;37(1):67–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyöty H. The “hygiene hypothesis” and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS. 2013;121(6):478–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Lodinová-Zádniková R, Sonnenborn U. Effect of preventive administration of a non-pathogenic Escherichia coli strain on the colonization of the intestine with microbial pathogens in newborn infants. Biol Neonate. 1997;71(4):224–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Sturm A, Rilling K, Baumgart DC, et al. Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect Immun. 2005;73(3):1452–65.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–3. This pilot intervention study showed that vaginal microbial transfer to infants born through caesarean section partly restored the oral, skin, and anal microbiota to be similar to that present in vaginally born infants. Google Scholar
  42. 42.
    Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatments on bacterial strain diversity and stability. Sci Transl Med. 2016;8(343):343RA81.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cardwell CR, Stene LC, Joner G, et al. Caesarean section is associated with an increased risk of childhood onset type 1 diabetes: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Hill C, Guarner F, Reid G, et al. Expert consensus document: the International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.CrossRefPubMedGoogle Scholar
  45. 45.
    Calcinaro F, Dionisi S, Marinaro M, et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia. 2005;48(8):1565–75.CrossRefPubMedGoogle Scholar
  46. 46.
    Uusitalo U, Liu X, Yang J, Aronsson CA, et al. Association of early exposure of probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr. 2016;170(1):20–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Smilowitz JT, Moya J, Breck MA, et al. Safety and tolerability of Bifidobacterium longum subspecies infantis EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. BMC Pediatr. 2017;17(1):133.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    •• Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics—advances and challenges. Adv Drug Deliv Rev. 2016;105(Pt A):44–54. This review discusses strategies to manipulate the microbiota and future challenges in the development of microbiome therapeutics. Google Scholar
  49. 49.
    Panigrahi P. Probiotics and prebiotics in neonatal necrotizing enterocolitis: new opportunities for translational research. Pathophysiology. 2014;21(1):35–46.CrossRefPubMedGoogle Scholar
  50. 50.
    Coppa GV, Zampini L, Galeazzi T, Gabrielli O. Prebiotics in human milk: a review. Dig Liver Dis. 2006;38(Suppl. 2):S291–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Marcobal A, Barboza M, Froehlich JW, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(95):334–40.Google Scholar
  52. 52.
    Matsuki T, Yahagi K, Mori H, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Brandt LJ, Aroniadis OC, Mellow M, et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107(7):1079–87.CrossRefPubMedGoogle Scholar
  54. 54.
    • Cohen NA, Maharshak N. Novel indications for fecal microbial transplantation: update and review of the literature. Dig Dis Sci. 2017;62(5):1131–45. This review focuses on new indications for fecal microbiota transplantation. Google Scholar
  55. 55.
    Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology. 2014;146(6):1573–82.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. Highthroughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes. 2013;4(2):125–35.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    •• Brüssow H. Biome engineering – 2020. Microb Biotechnol. 2016;9(5):553–63. This review discusses the current status of research on gut microbiome interventions and what might be expected until 2020 in this field. Google Scholar
  58. 58.
    Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity. 2014;40(6):833–42.CrossRefPubMedGoogle Scholar
  59. 59.
    •• Marino E, Richards JL, McLeod KH, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552–62. This experimental intervention showed that butyrate- and acetate-yielding diets reduced the incidence of autoimmune diabetes in NOD mice. Google Scholar
  60. 60.
    Le Leu RK, Winter JM, Christophersen CT, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114(2):220–30.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thaiss CA, Elinav E. The remedy within: will the microbiome fulfill its therapeutic promise? J Mol Med. 2017.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Children’s HospitalUniversity of HelsinkiHelsinkiFinland
  2. 2.Children’s HospitalHelsinki University HospitalHelsinkiFinland
  3. 3.Research Programs Unit, Diabetes and ObesityUniversity of HelsinkiHelsinkiFinland
  4. 4.Folkhälsan Research CenterHelsinkiFinland
  5. 5.Tampere Center for Child Health ResearchTampere University HospitalTampereFinland
  6. 6.ClinicumUniversity of HelsinkiHelsinkiFinland

Personalised recommendations