Skip to main content
Log in

Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion

  • Lifestyle Management to Reduce Diabetes\/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Approximately 366 million people worldwide have been diagnosed with type-2 diabetes (T2D). Chronic insulin resistance, decreased functional β-cell mass, and elevated blood glucose are defining characteristics of T2D. Great advances have been made in understanding the pathogenesis of T2D with respect to the effects of dietary macronutrient composition and energy intake on β-cell physiology and glucose homeostasis. It has been further established that obesity is a leading pathogenic factor for developing insulin resistance. However, insulin resistance may not progress to T2D unless β-cells are unable to secret an adequate amount of insulin to compensate for decreased insulin sensitivity. Therefore, pancreatic β-cell dysfunction plays an important role in the development of overt diabetes. This paper reviews recent research findings on the effects of several micronutrients (zinc, vitamin D, iron, vitamin A), leucine, and the phytochemical, genistein on pancreatic β-cell physiology with emphasis on their effects on insulin secretion, specifically in the context of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27:269–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Westerhaus B, Gosmanov AR, Umpierrez GE. Diabetes prevention: can insulin secretagogues do the job? Prim Care Diabetes. 2011;5:73–80.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gilbert ER, Liu D. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic beta-cell function. Food Funct. 2013;4:200–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fu Z, Liu D. Long-term exposure to genistein improves insulin secretory function of pancreatic beta-cells. Eur J Pharmacol. 2009;616:321–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Poitout V, Hagman D, Stein R, et al. Regulation of the insulin gene by glucose and fatty acids. J Nutr. 2006;136:873–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Suckale J, Solimena M. Pancreas islets in metabolic signaling—focus on the beta-cell. Front Biosci. 2008;13:7156–71.

    Article  CAS  PubMed  Google Scholar 

  8. Schmitz O, Runby J, Edge L, et al. On high frequency insulin oscillations. Ageing Res Rev. 2008;7:301–5.

    Article  CAS  PubMed  Google Scholar 

  9. Chandra R, Liddle RA. Modulation of pancreatic exocrine and endocrine secretion. Curr Opin Gastroenterol. 2013;29:517–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Newsholme P, Bender K, Kiely A, et al. Amino acid metabolism, insulin secretion and diabetes. Biochem Soc Trans. 2007;35:1180–6.

    Article  CAS  PubMed  Google Scholar 

  11. Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes. 2006;55 Suppl 2:S16–23.

    Article  CAS  PubMed  Google Scholar 

  12. van Loon LJ, Kruijshoop M, Menheere PP, et al. Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care. 2003;26:625–30.

    Article  PubMed  Google Scholar 

  13. Longo DL, Kasper DL, Jameson JL, et al. Harrison’s principles of internal medicine. 18th ed. USA: McGraw-Hill Companies, Inc.; 2012.

    Google Scholar 

  14. El-Azzouny M, Evans CR, Treutelaar MK, et al. Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion. J Biol Chem. 2014;289:13575–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ito K, Moriguchi R, Yamada Y, et al. High saturated fatty acid intake induces insulin secretion by elevating gastric inhibitory polypeptide levels in healthy individuals. Nutr Res. 2014;34:653–60.

    Article  CAS  Google Scholar 

  16. Kim HS, Hwang YC, Koo SH, et al. PPAR-gamma activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic beta-cells. PLoS One. 2013;8, e50128.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Schulz N, Kluth O, Jastroch M, et al. Minor role of mitochondrial respiration for fatty-acid induced insulin secretion. Int J Mol Sci. 2013;14:18989–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Wagner R, Hieronimus A, Lamprinou A, et al. Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor (FFAR1) dependent insulin secretion in humans. Mol Metab. 2014;3:676–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wagner R, Kaiser G, Gerst F, et al. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes. 2013;62:2106–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wu LE, Samocha-Bonet D, Whitworth PT, et al. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Mol Metab. 2014;3:465–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Peschke E, Muhlbauer E, Musshoff U, et al. Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J Pineal Res. 2002;33:63–71.

    Article  CAS  PubMed  Google Scholar 

  22. Ahren B, Havel PJ. Leptin inhibits insulin secretion induced by cellular cAMP in a pancreatic B cell line (INS-1 cells). Am J Physiol. 1999;277:R959–66.

    CAS  PubMed  Google Scholar 

  23. Sharma G, Prossnitz ER. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells. Endocrinology. 2011;152:3030–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang F, Sjoholm A, Zhang Q. Attenuation of insulin secretion by insulin-like growth factor binding protein-1 in pancreatic beta-cells. Biochem Biophys Res Commun. 2007;362:152–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kjems LL, Holst JJ, Volund A, et al. The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes. 2003;52:380–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hou JC, Min L, Pessin JE. Insulin granule biogenesis, trafficking and exocytosis. Vitam Horm. 2009;80:473–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hagstrom E, Hellman P, Lundgren E, et al. Serum calcium is independently associated with insulin sensitivity measured with euglycaemic-hyperinsulinaemic clamp in a community-based cohort. Diabetologia. 2007;50:317–24.

    Article  CAS  PubMed  Google Scholar 

  28. Priel T, Aricha-Tamir B, Sekler I. Clioquinol attenuates zinc-dependent beta-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol. 2007;565:232–9.

    Article  CAS  PubMed  Google Scholar 

  29. Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58:2070–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Dunn MF. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals. 2005;18:295–303.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu X, Orci L, Carroll R, et al. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc Natl Acad Sci U S A. 2002;99:10299–304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gavrilova J, Tougu V, Palumaa P. Affinity of zinc and copper ions for insulin monomers. Metallomics. 2014;6:1296–300.

    Article  CAS  PubMed  Google Scholar 

  33. Foster MC, Leapman RD, Li MX, et al. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J. 1993;64:525–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nygaard SB, Larsen A, Knuhtsen A, et al. Effects of zinc supplementation and zinc chelation on in vitro beta-cell function in INS-1E cells. BMC Res Notes. 2014;7:84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Slepchenko KG, James CB, Li YV. Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp Physiol. 2013;98:1301–11.

    Article  CAS  PubMed  Google Scholar 

  36. Robertson RP, Zhou H, Slucca M. A role for zinc in pancreatic islet beta-cell cross-talk with the alpha-cell during hypoglycaemia. Diabetes Obes Metab. 2011;13 Suppl 1:106–11.

    Article  CAS  PubMed  Google Scholar 

  37. Chimienti F, Devergnas S, Favier A, et al. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004;53:2330–7.

    Article  CAS  PubMed  Google Scholar 

  38. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.

    Article  CAS  PubMed  Google Scholar 

  39. Lemaire K, Ravier MA, Schraenen A, et al. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A. 2009;106:14872–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wijesekara N, Dai FF, Hardy AB, et al. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia. 2010;53:1656–68.

    Article  CAS  PubMed  Google Scholar 

  41. Sun Q, van Dam RM, Willett WC, et al. Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009;32:629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood). 2001;226:43–51.

    CAS  Google Scholar 

  43. Al-Maroof RA, Al-Sharbatti SS. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J. 2006;27:344–50.

    PubMed  Google Scholar 

  44. Tang X, Shay NF. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr. 2001;131:1414–20.

    CAS  PubMed  Google Scholar 

  45. Wong VV, Nissom PM, Sim SL, et al. Zinc as an insulin replacement in hybridoma cultures. Biotechnol Bioeng. 2006;93:553–63.

    Article  CAS  PubMed  Google Scholar 

  46. Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013;10, e1001383.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290:E916–24.

    Article  CAS  PubMed  Google Scholar 

  48. Pramyothin P, Biancuzzo RM, Lu Z, et al. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984;73:759–66.

    Article  Google Scholar 

  49. Kadowaki S, Norman AW. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984;73:759–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am. 2010;39:255–69. table of contents.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Zeitz U, Weber K, Soegiarto DW, et al. Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J. 2003;17:509–11.

    CAS  PubMed  Google Scholar 

  52. Oh JY, Barrett-Connor E. Association between vitamin D receptor polymorphism and type 2 diabetes or metabolic syndrome in community-dwelling older adults: the Rancho Bernardo Study. Metabolism. 2002;51:356–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ogunkolade BW, Boucher BJ, Prahl JM, et al. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes. 2002;51:2294–300.

    Article  CAS  PubMed  Google Scholar 

  54. Schuch NJ, Garcia VC, Vivolo SR, et al. Relationship between Vitamin D receptor gene polymorphisms and the components of metabolic syndrome. Nutr J. 2013;12:96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lee S, Clark SA, Gill RK, et al. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion. Endocrinology. 1994;134:1602–10.

    CAS  PubMed  Google Scholar 

  56. Ng KY, Ma MT, Leung KK, et al. Vitamin D and vitamin A receptor expression and the proliferative effects of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal pancreas. Stem Cell Rev. 2011;7:53–63.

    Article  CAS  PubMed  Google Scholar 

  57. Wolden-Kirk H, Rondas D, Bugliani M, et al. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans. Endocrinol. 2014;155:736–47. This is an important study that showed VitD might be effective at improving β-cell resistance to detrimental conditions associated with T1D and T2D.

    Article  CAS  Google Scholar 

  58. Sadek KM, Shaheen H. Biochemical efficacy of vitamin D in ameliorating endocrine and metabolic disorders in diabetic rats. Pharm Biol. 2014;52:591–6.

    Article  CAS  PubMed  Google Scholar 

  59. Wang AP, Li X, Chao C, et al. 1alpha, 25(OH)(2) D(3) protects pancreatic beta-cell line from cytokine-induced apoptosis and impaired insulin secretion. Zhonghua Yi Xue Za Zhi. 2012;92:695–9.

    CAS  PubMed  Google Scholar 

  60. Kayaniyil S, Retnakaran R, Harris SB, et al. Prospective associations of vitamin D with beta-cell function and glycemia: the PROspective Metabolism and ISlet cell Evaluation (PROMISE) cohort study. Diabetes. 2011;60:2947–53. This is an interesting study showing that increased baseline vitamin D levels are correlated to better β-cell function.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kayaniyil S, Vieth R, Retnakaran R, et al. Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care. 2010;33:1379–81.

    Article  PubMed Central  PubMed  Google Scholar 

  62. de las Heras J, Rajakumar K, Lee S, et al. 25-Hydroxyvitamin D in obese youth across the spectrum of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes Care. 2013;36:2048–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Javed A, Vella A, Balagopal PB, et al. Cholecalciferol supplementation does not influence beta-cell function and insulin action in obese adolescents: a prospective double-blind randomized trial. J Nutr. 2015;145:284–90.

    Article  PubMed  CAS  Google Scholar 

  64. Kramer CK, Swaminathan B, Hanley AJ, et al. Prospective associations of vitamin D status with beta-cell function, insulin sensitivity, and glycemia: the impact of parathyroid hormone status. Diabetes. 2014;63:3868–79. This study underlines the need to take PTH into consideration when evaluating the impact of VitD on glucose homeostasis.

    Article  CAS  PubMed  Google Scholar 

  65. Wolden-Kirk H, Overbergh L, Gysemans C, et al. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J Steroid Biochem Mol Biol. 2013;136:68–79.

    Article  CAS  PubMed  Google Scholar 

  66. Mitri J, Dawson-Hughes B, Hu FB, et al. Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 2011;94:486–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Puntarulo S. Iron, oxidative stress and human health. Mol Aspects Med. 2005;26:299–312.

    Article  CAS  PubMed  Google Scholar 

  68. Buysschaert M, Paris I, Selvais P, et al. Clinical aspects of diabetes secondary to idiopathic haemochromatosis in French-speaking Belgium. Diabetes Metab. 1997;23:308–13.

    CAS  PubMed  Google Scholar 

  69. Moirand R, Adams PC, Bicheler V, et al. Clinical features of genetic hemochromatosis in women compared with men. Ann Intern Med. 1997;127:105–10.

    Article  CAS  PubMed  Google Scholar 

  70. Dmochowski K, Finegood DT, Francombe W, et al. Factors determining glucose tolerance in patients with thalassemia major. J Clin Endocrinol Metab. 1993;77:478–83.

    CAS  PubMed  Google Scholar 

  71. Merkel PA, Simonson DC, Amiel SA, et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N Engl J Med. 1988;318:809–14.

    Article  CAS  PubMed  Google Scholar 

  72. Sheu WH, Chen YT, Lee WJ, et al. A relationship between serum ferritin and the insulin resistance syndrome is present in non-diabetic women but not in non-diabetic men. Clin Endocrinol (Oxf). 2003;58:380–5.

    Article  CAS  Google Scholar 

  73. MacDonald MJ, Cook JD, Epstein ML, et al. Large amount of (apo)ferritin in the pancreatic insulin cell and its stimulation by glucose. FASEB J. 1994;8:777–81.

    CAS  PubMed  Google Scholar 

  74. Andrews NC. The iron transporter DMT1. Int J Biochem Cell Biol. 1999;31:991–4.

    Article  CAS  PubMed  Google Scholar 

  75. Swaminathan S, Fonseca VA, Alam MG, et al. The role of iron in diabetes and its complications. Diabetes Care. 2007;30:1926–33.

    Article  CAS  PubMed  Google Scholar 

  76. Tuomainen TP, Nyyssonen K, Salonen R, et al. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care. 1997;20:426–8.

    Article  CAS  PubMed  Google Scholar 

  77. Cooksey RC, Jouihan HA, Ajioka RS, et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology. 2004;145:5305–12.

    Article  CAS  PubMed  Google Scholar 

  78. Abraham D, Rogers J, Gault P, et al. Increased insulin secretory capacity but decreased insulin sensitivity after correction of iron overload by phlebotomy in hereditary haemochromatosis. Diabetologia. 2006;49:2546–51.

    Article  CAS  PubMed  Google Scholar 

  79. Platis O, Anagnostopoulos G, Farmaki K, et al. Glucose metabolism disorders improvement in patients with thalassaemia major after 24–36 months of intensive chelation therapy. Pediatr Endocrinol Rev. 2004;2 Suppl 2:279–81.

    PubMed  Google Scholar 

  80. Borel MJ, Beard JL, Farrell PA. Hepatic glucose production and insulin sensitivity and responsiveness in iron-deficient anemic rats. Am J Physiol. 1993;264:E380–90.

    CAS  PubMed  Google Scholar 

  81. Farrell PA, Beard JL, Druckenmiller M. Increased insulin sensitivity in iron-deficient rats. J Nutr. 1988;118:1104–9.

    CAS  PubMed  Google Scholar 

  82. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem. 2005;51:1201–5.

    Article  CAS  PubMed  Google Scholar 

  83. Bo S, Menato G, Villois P, et al. Iron supplementation and gestational diabetes in midpregnancy. Am J Obstet Gynecol. 2009;201(158):e151–6.

    Google Scholar 

  84. Tarim O, Kucukerdogan A, Gunay U, et al. Effects of iron deficiency anemia on hemoglobin A1c in type 1 diabetes mellitus. Pediatr Int. 1999;41:357–62.

    Article  CAS  PubMed  Google Scholar 

  85. Matthews KA, Rhoten WB, Driscoll HK, et al. Vitamin A deficiency impairs fetal islet development and causes subsequent glucose intolerance in adult rats. J Nutr. 2004;134:1958–63.

    CAS  PubMed  Google Scholar 

  86. Trasino SE, Benoit YD, Gudas LJ. Vitamin A deficiency causes hyperglycemia and loss of pancreatic beta-cell mass. J Biol Chem. 2015;290:1456–73. This is an important trial that demonstrates the need for ATRA in glucose-stimulated insulin secretion and the maintenance of pancreatic β-cell and α-cell mass.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Donath MY, Halban PA. Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia. 2004;47:581–9.

    Article  CAS  PubMed  Google Scholar 

  88. Rhee EJ, Plutzky J. Retinoid metabolism and diabetes mellitus. Diabetes Metab J. 2012;36:167–80.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Shmarakov I, Fleshman MK, D’Ambrosio DN, et al. Hepatic stellate cells are an important cellular site for beta-carotene conversion to retinoid. Arch Biochem Biophys. 2010;504:3–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Lu J, Dixon WT, Tsin AT, et al. The metabolic availability of vitamin A is decreased at the onset of diabetes in BB rats. J Nutr. 2000;130:1958–62.

    CAS  PubMed  Google Scholar 

  91. Gudas LJ, Wagner JA. Retinoids regulate stem cell differentiation. J Cell Physiol. 2011;226:322–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Kobayashi H, Spilde TL, Bhatia AM, et al. Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial-mesenchymal interactions. Gastroenterology. 2002;123:1331–40.

    Article  CAS  PubMed  Google Scholar 

  93. Kadison A, Kim J, Maldonado T, et al. Retinoid signaling directs secondary lineage selection in pancreatic organogenesis. J Pediatr Surg. 2001;36:1150–6.

    Article  CAS  PubMed  Google Scholar 

  94. Molotkov A, Molotkova N, Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn. 2005;232:950–7.

    Article  CAS  PubMed  Google Scholar 

  95. Ostrom M, Loffler KA, Edfalk S, et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS One. 2008;3, e2841.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Perez RJ, Benoit YD, Gudas LJ. Deletion of retinoic acid receptor beta (RARbeta) impairs pancreatic endocrine differentiation. Exp Cell Res. 2013;319:2196–204.

    Article  CAS  PubMed  Google Scholar 

  97. Chertow BS, Blaner WS, Baranetsky NG, et al. Effects of vitamin A deficiency and repletion on rat insulin secretion in vivo and in vitro from isolated islets. J Clin Invest. 1987;79:163–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Tuch BE, Osgerby KJ. Maturation of insulinogenic response to glucose in human fetal pancreas with retinoic acid. Horm Metab Res Suppl. 1990;25:233–8.

    CAS  PubMed  Google Scholar 

  99. Fernandez-Mejia C, Davidson MB. Regulation of glucokinase and proinsulin gene expression and insulin secretion in RIN-m5F cells by dexamethasone, retinoic acid, and thyroid hormone. Endocrinology. 1992;130:1660–8.

    CAS  PubMed  Google Scholar 

  100. Blumentrath J, Neye H, Verspohl EJ. Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells. Cell Biochem Funct. 2001;19:159–69.

    Article  CAS  PubMed  Google Scholar 

  101. Chertow BS, Driscoll HK, Goking NQ, et al. Retinoid-X receptors and the effects of 9-cis-retinoic acid on insulin secretion from RINm5F cells. Metabolism. 1997;46:656–60.

    Article  CAS  PubMed  Google Scholar 

  102. Kane MA, Folias AE, Pingitore A, et al. Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A. 2010;107:21884–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Tsuruzoe K, Araki E, Furukawa N, et al. Creation and characterization of a mitochondrial DNA-depleted pancreatic beta-cell line: impaired insulin secretion induced by glucose, leucine, and sulfonylureas. Diabetes. 1998;47:621–31.

    Article  CAS  PubMed  Google Scholar 

  104. Floyd Jr JC, Fajans SS, Conn JW, et al. Stimulation of insulin secretion by amino acids. J Clin Invest. 1966;45:1487–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Kuhara T, Ikeda S, Ohneda A, et al. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. Am J Physiol. 1991;260:E21–6.

    CAS  PubMed  Google Scholar 

  106. Fahien LA, Macdonald MJ. The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes. 2011;60:2450–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Yang J, Wong RK, Park M, et al. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells. Diabetes. 2006;55:193–201.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Y, Guo K, LeBlanc RE, et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes. 2007;56:1647–54.

    Article  CAS  PubMed  Google Scholar 

  109. Nilsson M, Holst JJ, Bjorck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr. 2007;85:996–1004.

    CAS  PubMed  Google Scholar 

  110. Gingras AC, Kennedy SG, O’Leary MA, et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12:502–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7.

    Article  CAS  PubMed  Google Scholar 

  112. Lin TA, Kong X, Haystead TA, et al. PHAS-1 as a link between mitogen- activated protein kinase and translation initiation. Science. 1994;266:653–6.

    Article  CAS  PubMed  Google Scholar 

  113. Xu G, Marshall CA, Lin TA, et al. Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem. 1998;273:4485–91.

    Article  CAS  PubMed  Google Scholar 

  114. Xu G, Kwon G, Marshall CA, et al. Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic beta-cells. A possible role in protein translation and mitogenic signaling. J Biol Chem. 1998;273:28178–84.

    Article  CAS  PubMed  Google Scholar 

  115. Stipanuk MH. Leucine and protein synthesis: mTOR and beyond. Nutr Rev. 2007;65:122–9.

    Article  PubMed  Google Scholar 

  116. Kwon G, Marshall CA, Pappan KL, et al. Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes. 2004;53 Suppl 3:S225–32.

    Article  CAS  PubMed  Google Scholar 

  117. Xu G, Kwon G, Cruz WS, et al. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. 2001;50:353–60.

    Article  CAS  PubMed  Google Scholar 

  118. Blomstrand E, Eliasson J, Karlsson HK, et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136:269S–73S.

    CAS  PubMed  Google Scholar 

  119. Dardevet D, Kimball SR, Jefferson LS, et al. Portal infusion of amino acids is more efficient than peripheral infusion in stimulating liver protein synthesis at the same hepatic amino acid load in dogs. Am J Clin Nutr. 2008;88:986–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Fox HL, Kimball SR, Jefferson LS, et al. Amino acids stimulate phosphorylation of p70S6k and organization of rat adipocytes into multicellular clusters. Am J Physiol. 1998;274:C206–13.

    CAS  PubMed  Google Scholar 

  121. Branstrom R, Efendic S, Berggren PO, et al. Direct inhibition of the pancreatic beta-cell ATP-regulated potassium channel by alpha-ketoisocaproate. J Biol Chem. 1998;273:14113–8.

    Article  CAS  PubMed  Google Scholar 

  122. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest. 2005;115:2047–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Stanley LA, Copp AJ, Pope J, et al. Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain. Teratology. 1998;58:174–82.

    Article  CAS  PubMed  Google Scholar 

  124. Liu YJ, Cheng H, Drought H, et al. Activation of the KATP channel-independent signaling pathway by the nonhydrolyzable analog of leucine, BCH. Am J Physiol Endocrinol Metab. 2003;285:E380–9.

    Article  CAS  PubMed  Google Scholar 

  125. Stanley CA. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Mol Genet Metab. 2004;81 Suppl 1:S45–51.

    Article  CAS  PubMed  Google Scholar 

  126. Ali AA, Velasquez MT, Hansen CT, et al. Modulation of carbohydrate metabolism and peptide hormones by soybean isoflavones and probiotics in obesity and diabetes. J Nutr Biochem. 2005;16:693–9.

    Article  CAS  PubMed  Google Scholar 

  127. Fu Z, Gilbert ER, Pfeiffer L, et al. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab. 2012;37:480–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Jonas JC, Plant TD, Gilon P, et al. Multiple effects and stimulation of insulin secretion by the tyrosine kinase inhibitor genistein in normal mouse islets. Br J Pharmacol. 1995;114:872–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Persaud SJ, Harris TE, Burns CJ, et al. Tyrosine kinases play a permissive role in glucose-induced insulin secretion from adult rat islets. J Mol Endocrinol. 1999;22:19–28.

    Article  CAS  PubMed  Google Scholar 

  130. Liu D, Zhen W, Yang Z, et al. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes. 2006;55:1043–50.

    Article  CAS  PubMed  Google Scholar 

  131. Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells. J Biol Chem. 2002;277:48146–51.

    Article  CAS  PubMed  Google Scholar 

  132. Wang X, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology. 2001;142:1820–7.

    CAS  PubMed  Google Scholar 

  133. Fu Z, Zhang W, Zhen W, et al. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology. 2010;151:3026–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Jhala US, Canettieri G, Screaton RA, et al. cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003;17:1575–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Philippe J, Missotten M. Functional characterization of a cAMP-responsive element of the rat insulin I gene. J Biol Chem. 1990;265:1465–9.

    CAS  PubMed  Google Scholar 

  136. Hennige AM, Burks DJ, Ozcan U, et al. Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest. 2003;112:1521–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmin Liu.

Additional information

This article is part of the Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, W.T., Bowser, S.M., Fausnacht, D.W. et al. Beta Cell Function and the Nutritional State: Dietary Factors that Influence Insulin Secretion. Curr Diab Rep 15, 76 (2015). https://doi.org/10.1007/s11892-015-0650-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0650-1

Keywords

Navigation