Skip to main content

Advertisement

Log in

Multifocal Electroretinography in Diabetic Retinopathy and Diabetic Macular Edema

  • Microvascular Complications—Retinopathy (JK Sun, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

In this review article, we first present a brief overview of the vascular and neural components of diabetic retinopathy. Next, the multifocal electroretinogram (mfERG) technique, which can map neuroretinal function noninvasively, is described. Findings in diabetic retinal disease using the mfERG are reviewed. We then describe the progress that has been made to predict the onset and progression of diabetic retinopathy and edema in specific retinal locations, using quantitative models based on the mfERG. Finally, we consider the implications for the future of these predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Society to Prevent Blindness. Visual problems in the U.S. definitions, data sources, detailed data tables, analyses, interpretation. New York: National Society to Prevent Blindness; 1980. p. 1–46.

    Google Scholar 

  2. Beckles GL, Chou CF. Diabetes - United States, 2006 and 2010. MMWR Surveill Summ. 2013;62 Suppl 3:99–104.

    PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2003 [database on the Internet]. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2004. Available from: http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2003.pdf. Accessed 8 Apr 2005.

  4. Centers for Disease Control and Prevention. National diabetes fact sheet: general information and national estimates on diabetes and prediabetes in the United States, 2011 [database on the Internet]. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. 2011. Available from: http://www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf. Accessed 1 Apr 2014.

  5. The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int. 1995;47:1703–20.

    Article  Google Scholar 

  6. Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia. 2001;44:156–63.

    Article  CAS  PubMed  Google Scholar 

  7. UKPDS. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317:703–13.

    Article  Google Scholar 

  8. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Nakamura M. New insights into the pathophysiology of diabetic retinopathy: potential cell-specific therapeutic targets. Diabetes Technol Ther. 2000;2:601–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cunha-Vaz J, Bernardes R. Nonproliferative retinopathy in diabetes type 2. Initial stages and characterization of phenotypes. Prog Retin Eye Res. 2005;24:355–77.

    Article  PubMed  Google Scholar 

  10. Aiello LP, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris 3rd FL, et al. Diabetic retinopathy. Diabetes Care. 1998;21:143–56.

    CAS  PubMed  Google Scholar 

  11. Early Treatment Diabetic Retinopathy Study Research Group (ETDRS). Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Ophthalmology. 1991;98:823–33.

    Article  Google Scholar 

  12. Early Treatment Diabetic Retinopathy Study Research Group (ETDRS). Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol. 1985;103:1796–806.

    Article  Google Scholar 

  13. Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:283–90.

    Article  CAS  PubMed  Google Scholar 

  14. Wolter JR. Diabetic retinopathy. Am J Ophthalmol. 1961;51:1123–41.

    CAS  PubMed  Google Scholar 

  15. Bresnick GH. Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol. 1986;104:989–90.

    Article  CAS  PubMed  Google Scholar 

  16. Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy. Surv Ophthalmol. 1999;44:53–60.

    Article  CAS  PubMed  Google Scholar 

  17. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55:2401–11.

    Article  CAS  PubMed  Google Scholar 

  18. Jackson GR, Barber AJ. Visual dysfunction associated with diabetic retinopathy. Curr Diab Rep. 2010;10:380–4.

    Article  PubMed  Google Scholar 

  19. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sutter EE, Tran D. The field topography of ERG components in man–I. The photopic luminance response. Vis Res. 1992;32:433–46.

    Article  CAS  PubMed  Google Scholar 

  21. Kondo M, Miyake Y, Horiguchi M, Suzuki S, Tanikawa A. Clinical evaluation of multifocal electroretinogram. Invest Ophthalmol Vis Sci. 1995;36:2146–50.

    CAS  PubMed  Google Scholar 

  22. Bearse Jr MA, Sutter EE. Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis. 1996;13:634–40.

    Article  PubMed  Google Scholar 

  23. Sutter E. The interpretation of multifocal binary kernels. Doc Ophthalmol. 2000;100:49–75.

    Article  CAS  PubMed  Google Scholar 

  24. Sutter EE. Imaging visual function with the multifocal m-sequence technique. Vis Res. 2001;41:1241–55.

    Article  CAS  PubMed  Google Scholar 

  25. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000;19:607–46.

    Article  CAS  PubMed  Google Scholar 

  26. Harrison WW, Bearse Jr MA, Ng JS, Barez S, Schneck ME, Adams AJ. Reproducibility of the mfERG between instruments. Doc Ophthalmol. 2009;119:67–78.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sutter EE, Bearse Jr MA. The optic nerve head component of the human ERG. Vis Res. 1999;39:419–36.

    Article  CAS  PubMed  Google Scholar 

  28. Bearse Jr MA, Shimada Y, Sutter EE. Distribution of oscillatory components in the central retina. Doc Ophthalmol. 2000;100:185–205.

    Article  PubMed  Google Scholar 

  29. Hood DC, Bearse Jr MA, Sutter EE, Viswanathan S, Frishman LJ. The optic nerve head component of the monkey's (Macaca mulatta) multifocal electroretinogram (mERG). Vis Res. 2001;41:2029–41.

    Article  CAS  PubMed  Google Scholar 

  30. Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci. 2002;43:1673–85.

    PubMed  Google Scholar 

  31. Hare WA, Ton H. Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses. Doc Ophthalmol. 2002;105:189–222.

    Article  PubMed  Google Scholar 

  32. Bearse Jr MA, Han Y, Schneck ME, Barez S, Jacobsen C, Adams AJ. Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45:3259–65.

    Article  PubMed  Google Scholar 

  33. Shimada Y, Bearse Jr MA, Sutter EE. Multifocal electroretinograms combined with periodic flashes: direct responses and induced components. Graefes Arch Clin Exp Ophthalmol. 2005;243:132–41.

    Article  PubMed  Google Scholar 

  34. Bronson-Castain KW, Bearse Jr MA, Han Y, Schneck ME, Barez S, Adams AJ. Association between multifocal ERG implicit time delays and adaptation in patients with diabetes. Invest Ophthalmol Vis Sci. 2007;48:5250–6.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Palmowski AM, Sutter EE, Bearse Jr MA, Fung W. Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci. 1997;38:2586–96.

    CAS  PubMed  Google Scholar 

  36. Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 1999;40:2638–51.

    CAS  PubMed  Google Scholar 

  37. Hood DC, Li J. A technique for measuring individual multifocal ERG records. In: Yager D, editor. Non-invasive assessment of the visual system. Trends in optics and photonics, vol. 11. Washington, D.C.: Optical Society of America; 1997. p. 33–41.

    Google Scholar 

  38. Han Y, Bearse Jr MA, Schneck ME, Barez S, Jacobsen C, Adams AJ. Towards optimal filtering of "standard" multifocal electroretinogram (mfERG) recordings: findings in normal and diabetic subjects. Br J Ophthalmol. 2004;88:543–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bearse Jr MA, Han Y, Schneck ME, Adams AJ. Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci. 2004;45:296–304.

    Article  PubMed  Google Scholar 

  40. Bearse Jr MA, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, et al. A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res. 2006;25:425–48.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Klemp K, Larsen M, Sander B, Vaag A, Brockhoff PB, Lund-Andersen H. Effect of short-term hyperglycemia on multifocal electroretinogram in diabetic patients without retinopathy. Invest Ophthalmol Vis Sci. 2004;45:3812–9.

    Article  PubMed  Google Scholar 

  42. Yu M, Zhang X, Zhong X, Yu Q, Jiang F, Ma J, et al. Multifocal electroretinograms in the early stages of diabetic retinopathy. Chin Med J (Engl). 2002;115:563–6.

    Google Scholar 

  43. Kurtenbach A, Langrova H, Zrenner E. Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Invest Ophthalmol Vis Sci. 2000;41:3234–41.

    CAS  PubMed  Google Scholar 

  44. Yamamoto S, Yamamoto T, Hayashi M, Takeuchi S. Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms. Graefes Arch Clin Exp Ophthalmol. 2001;239:96–101.

    Article  CAS  PubMed  Google Scholar 

  45. Shimada Y, Li Y, Bearse Jr MA, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol. 2001;85:414–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Onozu H, Yamamoto S. Oscillatory potentials of multifocal electroretinogram retinopathy. Doc Ophthalmol. 2003;106:327–32.

    Article  PubMed  Google Scholar 

  47. Tyrberg M, Ponjavic V, Lovestam-Adrian M. Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc Ophthalmol. 2005;110:137–43.

    Article  PubMed  Google Scholar 

  48. Klemp K, Sander B, Brockhoff PB, Vaag A, Lund-Andersen H, Larsen M. The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci. 2005;46:2620–6.

    Article  PubMed  Google Scholar 

  49. Han Y, Adams AJ, Bearse Jr MA, Schneck ME. Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol. 2004;122:1809–15.

    Article  PubMed  Google Scholar 

  50. Schneck ME, Bearse Jr MA, Han Y, Barez S, Jacobsen C, Adams AJ. Comparison of mfERG waveform components and implicit time measurement techniques for detecting functional change in early diabetic eye disease. Doc Ophthalmol. 2004;108:223–30.

    Article  PubMed  Google Scholar 

  51. Greenstein VC, Holopigian K, Hood DC, Seiple W, Carr RE. The nature and extent of retinal dysfunction associated with diabetic macular edema. Invest Ophthalmol Vis Sci. 2000;41:3643–54.

    CAS  PubMed  Google Scholar 

  52. Holm K, Ponjavic V, Lovestam-Adrian M. Using multifocal electroretinography hard exudates affect macular function in eyes with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2010;248:1241–7.

    Article  PubMed  Google Scholar 

  53. Lovestam-Adrian M, Holm K. Multifocal electroretinography amplitudes increase after photocoagulation in areas with increased retinal thickness and hard exudates. Acta Ophthalmol. 2010;88:188–92.

    Article  PubMed  Google Scholar 

  54. Greenstein VC, Chen H, Hood DC, Holopigian K, Seiple W, Carr RE. Retinal function in diabetic macular edema after focal laser photocoagulation. Invest Ophthalmol Vis Sci. 2000;41:3655–64.

    CAS  PubMed  Google Scholar 

  55. Tan W, Wright T, Dupuis A, Lakhani E, Westall C. Localizing functional damage in the neural retina of adolescents and young adults with type 1 diabetes. Invest Ophthalmol Vis Sci. 2014.

  56. Lakhani E, Wright T, Abdolell M, Westall C. Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51:5297–303.

    Article  PubMed  Google Scholar 

  57. Bronson-Castain KW, Bearse Jr MA, Neuville J, Jonasdottir S, King-Hooper B, Barez S, et al. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina. 2012;32:92–102. The results of this study indicate that adolescents with type 2 diabetes have greater dysfunction and vascular changes in the retina of the eye than adolescents with type 1 diabetes.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Laron M, Bearse Jr MA, Bronson-Castain K, Jonasdottir S, King-Hooper B, Barez S, et al. Interocular symmetry of abnormal multifocal electroretinograms in adolescents with diabetes and no retinopathy. Invest Ophthalmol Vis Sci. 2012;53:316–21.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Bronson-Castain KW, Bearse Jr MA, Neuville J, Jonasdottir S, King-Hooper B, Barez S, et al. Adolescents with Type 2 diabetes: early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina. 2009;29:618–26.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Tyrberg M, Lindblad U, Melander A, Lovestam-Adrian M, Ponjavic V, Andreasson S. Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy. Doc Ophthalmol. 2011;123:193–8.

    Article  CAS  PubMed  Google Scholar 

  61. Laron M, Bearse Jr MA, Bronson-Castain K, Jonasdottir S, King-Hooper B, Barez S, et al. Association between local neuroretinal function and control of adolescent type 1 diabetes. Invest Ophthalmol Vis Sci. 2012;53:7071–6. The findings reported here show, in adolescents with type 1 diabetes, that there is a correlation between long-term blood glucose concentration (HbA1c) and neuroretinal function measured with the mfERG.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Dhamdhere KP, Bearse Jr MA, Harrison W, Barez S, Schneck ME, Adams AJ. Associations between local retinal thickness and function in early diabetes. Invest Ophthalmol Vis Sci. 2012;53:6122–8. This paper describes the lack of association, in patients with diabetes and no retinopathy, between local retinal function measured with the mfERG and changes in total retinal thickness. The functional changes do not appear to have a measureable anatomical correlate.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Han Y, Bearse Jr MA, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45:948–54.

    Article  PubMed  Google Scholar 

  64. Zeger SL, Liang KY, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988;44:1049–60.

    Article  CAS  PubMed  Google Scholar 

  65. Ng JS, Bearse Jr MA, Schneck ME, Barez S, Adams AJ. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci. 2008;49:1622–8.

    Article  PubMed  Google Scholar 

  66. Han Y, Schneck ME, Bearse Jr MA, Barez S, Jacobsen CH, Jewell NP, et al. Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45:4106–12.

    Article  PubMed  Google Scholar 

  67. Harrison WW, Bearse Jr MA, Ng JS, Jewell NP, Barez S, Burger D, et al. Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci. 2011;52:772–7. This paper describes the first model based on the mfERG to predict the initial onset of diabetic retinopathy in adults. The model was cross-validated and demonstrates impressive accuracy.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Harrison WW, Bearse Jr MA, Schneck ME, Wolff BE, Jewell NP, Barez S, et al. Prediction, by retinal location, of the onset of diabetic edema in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52:6825–31. This report describes the formulation of the first mfERG-based model to predict the onset of diabetic retinal edema in adults. The cross-validated model demonstrates impressive accuracy.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anthony Adams, Marilyn Schneck, Nicholas Jewell, Kevin Bronson-Castain, Kavita Dhamdhere, Michal Laron, Wendy Harrison, Shirin Barez, Jason Ng, Ying Han, Brian Wolff, and Ken Huie for their contributions and valuable assistance. Marcus A. Bearse Jr. reports grants from JDRF and the National Eye Institute. Glen Y. Ozawa reports grants from JDRF.

Compliance with Ethics Guidelines

Conflict of Interest

Marcus A. Bearse Jr. and Glen Y. Ozawa declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. Bearse Jr..

Additional information

This article is part of the Topical Collection on Microvascular Complications—Retinopathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bearse, M.A., Ozawa, G.Y. Multifocal Electroretinography in Diabetic Retinopathy and Diabetic Macular Edema. Curr Diab Rep 14, 526 (2014). https://doi.org/10.1007/s11892-014-0526-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0526-9

Keywords

Navigation