Skip to main content

Advertisement

Log in

Functional Imaging Predictors of Response to Chemoradiation

  • Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer (JY Wo, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Purpose of Review

Early prediction of response to chemoradiotherapy in locally advanced rectal cancer has the potential to minimize surgical intervention in patients with complete response, while allowing non-responding patients to explore more aggressive treatments. Functional imaging detection of tumoral microstructural and metabolic changes presents a valuable tool for preoperative chemoradiation response assessment.

Recent Findings

Diffusion-weighted MRI has increasingly been incorporated into study protocols, with the apparent diffusion coefficient largely found to be the most robust global predictor of neoadjuvant therapy response. However, no definitive predictive biomarkers have been identified, with inconsistent results across all imaging modalities.

Summary

We evaluated the pros and cons of PET/CT imaging; perfusion imaging; and diffusion-weighted, dynamic contrast-enhanced, multiparametric, and low-field functional MRI in the early prediction of response to chemoradiotherapy. Future directions of study include combinatorial imaging with both MRI and PET/CT modalities and further investigation of on-board low-field MRI imaging during radiotherapy treatment delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. National Comprehensive Cancer Network. Clinical practice guidelines in oncology, rectal cancer version 2. 2017.

  2. van de Velde CJ, Boelens PG, Borras JM, Coebergh JW, Cervantes A, Blomqvist L, et al. EURECCA colorectal: multidisciplinary management: European consensus conference colon & rectum. Eur J Cancer. 2014;50(1):1–e1. https://doi.org/10.1016/j.ejca.2013.06.048.

    Article  PubMed  Google Scholar 

  3. Paun BC, Cassie S, MacLean AR, Dixon E, Buie WD. Postoperative complications following surgery for rectal cancer. Ann Surg. 2010;251(5):807–18. https://doi.org/10.1097/SLA.0b013e3181dae4ed.

    Article  PubMed  Google Scholar 

  4. Juul T, Ahlberg M, Biondo S, Espin E, Jimenez LM, Matzel KE, et al. Low anterior resection syndrome and quality of life: an international multicenter study. Dis Colon Rectum. 2014;57(5):585–91. https://doi.org/10.1097/DCR.0000000000000116.

    Article  PubMed  Google Scholar 

  5. Roh MS, Colangelo LH, O’Connell MJ, Yothers G, Deutsch M, Allegra CJ, et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol. 2009;27(31):5124. https://doi.org/10.1200/JCO.2009.22.0467.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stipa F, Chessin DB, Shia J, Paty PB, Weiser M, Temple LK, et al. A pathologic complete response of rectal cancer to preoperative combined-modality therapy results in improved oncological outcome compared with those who achieve no downstaging on the basis of preoperative endorectal ultrasonography. Ann Surg Oncol. 2006;13(8):1047–53. https://doi.org/10.1245/ASO.2006.03.053.

    Article  PubMed  Google Scholar 

  7. Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo LJ, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11(9):835–44. https://doi.org/10.1016/S1470-2045(10)70172-8.

    Article  PubMed  Google Scholar 

  8. Habr-Gama A, Gama-Rodrigues J, São Julião GP, Proscurshim I, Sabbagh C, Lynn PB, et al. Local recurrence after complete clinical response and watch and wait in rectal cancer after neoadjuvant chemoradiation: impact of salvage therapy on local disease control. Int J of Radiat Oncol Biol Phys. 2014;88(4):822–8. https://doi.org/10.1016/j.ijrobp.2013.12.012.

    Article  Google Scholar 

  9. Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr, e Sousa AH Jr, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240(4):711. https://doi.org/10.1097/01.sla.0000141194.27992.32.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Habr-Gama A. Assessment and management of the complete clinical response of rectal cancer to chemoradiotherapy. Color Dis. 2006;8(s3):21–4. https://doi.org/10.1111/j.1463-1318.2006.01066.x.

    Article  Google Scholar 

  11. Curvo-Semedo L, Lambregts DM, Maas M, Thywissen T, Mehsen RT, Lammering G, et al. Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy—conventional MR volumetry versus diffusion-weighted MR imaging. Radiology. 2011;260(3):734–43. https://doi.org/10.1148/radiol.11102467.

    Article  PubMed  Google Scholar 

  12. Chen CC, Lee RC, Lin JK, Wang LW, Yang SH. How accurate is magnetic resonance imaging in restaging rectal cancer in patients receiving preoperative combined chemoradiotherapy? Dis Colon Rectum. 2005;48(4):722–8. https://doi.org/10.1007/s10350-004-0851-1.

    Article  PubMed  Google Scholar 

  13. van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269(1):101–12. https://doi.org/10.1148/radiol.13122833.

    Article  PubMed  Google Scholar 

  14. Glynne-Jones R, Hughes R. Complete response after chemoradiotherapy in rectal cancer (watch-and-wait): have we cracked the code? Clin Oncol (R Coll Radiol). 2016;28(2):152–60. https://doi.org/10.1016/j.clon.2015.10.011.

    Article  CAS  Google Scholar 

  15. Smith JJ, Chow OS, Gollub MJ, Nash GM, Temple LK, Weiser MR, et al. Organ preservation in rectal adenocarcinoma: a phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management. BMC Cancer. 2015;15(1):767. https://doi.org/10.1186/s12885-015-1632-z.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Engenhart R, Kimmig BN, Strauss LG, Höver KH, Romahn J, Haberkorn U, et al. Therapy monitoring of presacral recurrences after high-dose irradiation: value of PET, CT, CEA and pain score. Strahlenther Onkol. 1992;168(4):203–12.

    PubMed  CAS  Google Scholar 

  17. Huh JW, Min JJ, Lee JH, Kim HR, Kim YJ. The predictive role of sequential FDG-PET/CT in response of locally advanced rectal cancer to neoadjuvant chemoradiation. Am J Clin Oncol. 2012;35(4):340–4. https://doi.org/10.1097/COC.0b013e3182118e7d.

    Article  PubMed  Google Scholar 

  18. Capirci C, Rubello D, Pasini F, Galeotti F, Bianchini E, Del Favero G, et al. The role of dual-time combined 18-fluorideoxyglucose positron emission tomography and computed tomography in the staging and restaging workup of locally advanced rectal cancer, treated with preoperative chemoradiation therapy and radical surgery. Int J Radiat Oncol Biol Phys. 2009;74(5):1461–9. https://doi.org/10.1016/j.ijrobp.2008.10.064.

    Article  PubMed  Google Scholar 

  19. Maffione AM, Ferretti A, Grassetto G, Bellan E, Capirci C, Chondrogiannis S, et al. Fifteen different 18 F-FDG PET/CT qualitative and quantitative parameters investigated as pathological response predictors of locally advanced rectal cancer treated by neoadjuvant chemoradiation therapy. Eur J Nucl Med Mol Imaging. 2013;40(6):853–64. https://doi.org/10.1007/s00259-013-2357-3.

    Article  PubMed  CAS  Google Scholar 

  20. Koo PJ, Kim SJ, Chang S, Kwak JJ. Interim fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography to predict pathologic response to preoperative chemoradiotherapy and prognosis in patients with locally advanced rectal cancer. Clin Colorectal Cancer. 2016;15(4):e213–9. https://doi.org/10.1016/j.clcc.2016.04.002.

    Article  PubMed  Google Scholar 

  21. Bampo C, Alessi A, Fantini S, Bertarelli G, De Braud F, Bombardieri E, et al. Is the standardized uptake value of FDG-PET/CT predictive of pathological complete response in locally advanced rectal cancer treated with capecitabine-based neoadjuvant chemoradiation? Oncology. 2013;84(4):191–9. https://doi.org/10.1159/000345601.

    Article  PubMed  CAS  Google Scholar 

  22. Niccoli-Asabella A, Altini C, De Luca R, Fanelli M, Rubini D, Caliandro C, et al. Prospective analysis of 18F-FDG PET/CT predictive value in patients with low rectal cancer treated with neoadjuvant chemoradiotherapy and conservative surgery. Biomed Res Int. 2014;2014 https://doi.org/10.1155/2014/952843.

  23. Kim JW, Kim HC, Park JW, Park SC, Sohn DK, Choi HS, et al. Predictive value of 18 FDG PET-CT for tumour response in patients with locally advanced rectal cancer treated by preoperative chemoradiotherapy. Int J Color Dis. 2013;28(9):1217–24. https://doi.org/10.1007/s00384-013-1657-1.

    Article  Google Scholar 

  24. Goldberg N, Kundel Y, Purim O, Bernstine H, Gordon N, Morgenstern S, et al. Early prediction of histopathological response of rectal tumors after one week of preoperative radiochemotherapy using 18 F-FDG PET-CT imaging. A prospective clinical study. Radiat Oncol. 2012;7(1):124. https://doi.org/10.1186/1748-717X-7-124.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Travaini LL, Zampino MG, Colandrea M, Ferrari ME, Gilardi L, Leonardi MC, et al. PET/CT with fluorodeoxyglucose during neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Ecancermedicalscience. 2016;10 https://doi.org/10.3332/ecancer.2016.629.

  26. Guillem JG, Ruby JA, Leibold T, Akhurst TJ, Yeung HW, Gollub MJ, et al. Neither FDG-PET nor CT can distinguish between a pathological complete response and an incomplete response after neoadjuvant chemoradiation in locally advanced rectal cancer: a prospective study. Ann Surg. 2013;258(2):289–95. https://doi.org/10.1097/SLA.0b013e318277b625.

    Article  PubMed  Google Scholar 

  27. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging: the visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2(3):159–71. https://doi.org/10.1016/S1095-0397(99)00016-3.

    Article  PubMed  Google Scholar 

  28. Puri T, Greenhalgh TA, Wilson JM, Franklin J, Wang LM, Strauss V, et al. [18 F] Fluoromisonidazole PET in rectal cancer. EJNMMI Res. 2017;7(1):78. https://doi.org/10.1186/s13550-017-0324-x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aiba T, Uehara K, Nihashi T, Tsuzuki T, Yatsuya H, Yoshioka Y, et al. MRI and FDG-PET for assessment of response to neoadjuvant chemotherapy in locally advanced rectal cancer. Ann Surg Oncol. 2014;21(6):1801–8. https://doi.org/10.1245/s10434-014-3538-4.

    Article  PubMed  Google Scholar 

  30. Elmi A, Hedgire SS, Covarrubias D, Abtahi SM, Hahn PF, Harisinghani M. Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clin Radiol. 2013;68(10):e524–31. https://doi.org/10.1016/j.crad.2013.05.094.

    Article  PubMed  CAS  Google Scholar 

  31. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–35. https://doi.org/10.2214/AJR.06.1403.

    Article  PubMed  Google Scholar 

  32. Curvo-Semedo L, Lambregts DM, Maas M, Beets GL, Caseiro-Alves F, Beets-Tan RG. Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging. 2012;35(6):1365–71. https://doi.org/10.1002/jmri.23589.

    Article  PubMed  Google Scholar 

  33. Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol. 2008;5(4):220. https://doi.org/10.1038/ncponc1073.

    Article  PubMed  Google Scholar 

  34. Lambrecht M, Vandecaveye V, De Keyzer F, Roels S, Penninckx F, Van Cutsem E, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys. 2012;82(2):863–70. https://doi.org/10.1016/j.ijrobp.2010.12.063.

    Article  PubMed  Google Scholar 

  35. Humphries PD, Sebire NJ, Siegel MJ, Olsen ØE. Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology. 2007;245(3):848–54. https://doi.org/10.1148/radiol.2452061535.

    Article  PubMed  Google Scholar 

  36. Moffat BA, Hall DE, Stojanovska J, McConville PJ, Moody JB, Chenevert TL, et al. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGMA. 2004;17(3–6):249–59. https://doi.org/10.1007/s10334-004-0079-z.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27):6408–19. https://doi.org/10.1016/j.biomaterials.2012.05.047.

    Article  PubMed  CAS  Google Scholar 

  38. Barbaro B, Fiorucci C, Tebala C, Valentini V, Gambacorta MA, Vecchio FM, et al. Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology. 2009;250(3):730–9. https://doi.org/10.1148/radiol.2503080310.

    Article  PubMed  Google Scholar 

  39. Foti PV, Privitera G, Piana S, Palmucci S, Spatola C, Bevilacqua R, et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted MR imaging in the response assessment after neoadjuvant chemo-radiotherapy. Eur J Radiol Open. 2016;3:145–52. https://doi.org/10.1016/j.ejro.2016.06.003.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Xie H, Sun T, Chen M, Wang H, Zhou X, Zhang Y, Zeng H, Wang J, Fu W. Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(6). https://doi.org/10.1097/MD.0000000000000517.

  41. • Chen YG, Chen MQ, Guo YY, Li SC, Wu JX. Xu BH. Apparent diffusion coefficient predicts pathology complete response of rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS One. 2016;11(4):e0153944. https://doi.org/10.1371/journal.pone.0153944. An analysis of 100 patients with rectal cancer (50 with pCR and 50 without) in which percentage ADC change was the most accurate predictor of NCRT response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bassaneze T, Gonçalves JE, Faria JF, Palma RT, Waisberg J. Quantitative aspects of diffusion-weighted magnetic resonance imaging in rectal cancer response to neoadjuvant therapy. Radiol Oncol. 2017 Sep 1;51(3):270–6. https://doi.org/10.1515/raon-2017-0025.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Iannicelli E, Di Pietropaolo M, Pilozzi E, Osti MF, Valentino M, Masoni L, et al. Value of diffusion-weighted MRI and apparent diffusion coefficient measurements for predicting the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy. Abdom Radiol (NY). 2016;41(10):1906–17. https://doi.org/10.1007/s00261-016-0805-9.

    Article  Google Scholar 

  44. •• Pizzi AD, Cianci R, Genovesi D, Esposito G, Timpani M, Tavoletta A, et al. Performance of diffusion-weighted magnetic resonance imaging at 3.0 T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy. Abdom Radiol (NY). 2018; https://doi.org/10.1007/s00261-018-1457-8. One of few studies evaluating an early imaging timepoint (2 weeks after the start of NCRT) and associated early percentage ADC change as a potential response predictor.

  45. De Felice F, Magnante AL, Musio D, Ciolina M, De Cecco CN, Rengo M, et al. Diffusion-weighted magnetic resonance imaging in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Eur J Surg Oncol. 2017;43(7):1324–9. https://doi.org/10.1016/j.ejso.2017.03.010.

    Article  PubMed  Google Scholar 

  46. Quaia E, Gennari AG, Ricciardi MC, Ulcigrai V, Angileri R, Cova MA. Value of percent change in tumoral volume measured at T2-weighted and diffusion-weighted MRI to identify responders after neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. J Magn Reson Imaging. 2016;44(6):1415–24. https://doi.org/10.1002/jmri.25310.

    Article  PubMed  Google Scholar 

  47. Lambregts DM, Beets GL, Maas M, Curvo-Semedo L, Kessels AG, Thywissen T, et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol. 2011;21(12):2567–74. https://doi.org/10.1007/s00330-011-2220-5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. •• Blazic IM, Lilic GB, Gajic MM. Quantitative assessment of rectal cancer response to neoadjuvant combined chemotherapy and radiation therapy: comparison of three methods of positioning region of interest for ADC measurements at diffusion-weighted MR imaging. Radiology. 2016;282(2):418–28. https://doi.org/10.1148/radiol.2016151908. A study juxtaposing three different ROI positioning methods for DW-MRI ADC measurements, with whole-tumor volume measurement of percentage ADC change exhibiting the best response.

    Article  PubMed  Google Scholar 

  49. Lambregts DM, van Heeswijk MM, Pizzi AD, van Elderen SG, Andrade L, Peters NH, et al. Diffusion-weighted MRI to assess response to chemoradiotherapy in rectal cancer: main interpretation pitfalls and their use for teaching. Eur Radiol. 2017;27(10):4445–54. https://doi.org/10.1007/s00330-017-4830-z.

    Article  PubMed  Google Scholar 

  50. Lim JS, Kim D, Baek SE, Myoung S, Choi J, Shin SJ, et al. Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol. 2012;22(8):1693–700. https://doi.org/10.1007/s00330-012-2416-3.

    Article  PubMed  Google Scholar 

  51. Gollub MJ, Tong T, Weiser M, Zheng J, Gonen M, Zakian KL. Limited accuracy of DCE-MRI in identification of pathological complete responders after chemoradiotherapy treatment for rectal cancer. Eur Radiol. 2017;27(4):1605–12. https://doi.org/10.1007/s00330-016-4493-1.

    Article  PubMed  Google Scholar 

  52. Intven M, Reerink O, Philippens ME. Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging. 2015;41(6):1646–53. https://doi.org/10.1002/jmri.24718.

    Article  PubMed  Google Scholar 

  53. Intven M, Monninkhof EM, Reerink O, Philippens ME. Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer. Acta Oncol. 2015;54(10):1729–36. https://doi.org/10.3109/0284186X.2015.1037010.

    Article  PubMed  CAS  Google Scholar 

  54. Kino A, Shaffer J, Maturen KE, Schmiedeskamp H, Koong AC, Chang DT, et al. Perfusion CT measurements predict tumor response in rectal carcinoma. Abdom Radiol. 2017;42(4):1132–40. https://doi.org/10.1007/s00261-016-0983-5.

    Article  Google Scholar 

  55. Dighe S, Castellano E, Blake H, Jeyadevan N, Koh MU, Orten M, et al. Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges. Br J Radiol. 2012;85(1018):e814–25. https://doi.org/10.1259/bjr/19855447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Attenberger UI, Ong MM, Rathmann N, Doyon F, Kienle P, Hofheinz RD, et al. mMRI at 3.0 T as an evaluation tool of therapeutic response to neoadjuvant CRT in patients with advanced-stage rectal cancer. Anticancer Res. 2017;37(1):215–22. https://doi.org/10.21873/anticanres.11309.

    Article  PubMed  Google Scholar 

  57. De Cecco CN, Ciolina M, Caruso D, Rengo M, Ganeshan B, Meinel FG, et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY). 2016;41(9):1728–35. https://doi.org/10.1007/s00261-016-0733-8.

    Article  PubMed  Google Scholar 

  58. Hötker AM, Tarlinton L, Mazaheri Y, Woo KM, Gönen M, Saltz LB, et al. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: a comparison of morphological, volumetric and functional MRI parameters. Eur Radiol. 2016;26(12):4303–12. https://doi.org/10.1007/s00330-016-4283-9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vojtíšek R, Korčáková E, Mařan J, Šorejs O, Fínek J. Neoadjuvant chemoradiotherapy of the rectal carcinoma—the correlation between the findings on the restaging multiparametric 3T MRI scanning and the surgical findings. Rep Pract Oncol Radiother. 2017;22(4):265–76. https://doi.org/10.1016/j.rpor.2017.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Le Bihan D, Basser PJ. Molecular diffusion and nuclear magnetic resonance. Diffusion and perfusion magnetic resonance imaging. 1995:5–17.

  61. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710. https://doi.org/10.1002/nbm.1518.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bihan DL, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med. 1992;27(1):171–8. https://doi.org/10.1002/mrm.1910270116.

    Article  PubMed  Google Scholar 

  63. • Lu W, Jing H, Ju-Mei Z, Shao-Lin N, Fang C, Xiao-Ping Y, et al. Intravoxel incoherent motion diffusion-weighted imaging for discriminating the pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Sci Rep. 2017;7(1):8496. https://doi.org/10.1038/s41598-017-09227-9. An investigation of IVIM DW-MRI discrimination of pCR to NCRT in rectal cancer patients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhu HB, Zhang XY, Zhou XH, Li XT, Liu YL, Wang S, et al. Assessment of pathological complete response to preoperative chemoradiotherapy by means of multiple mathematical models of diffusion-weighted MRI in locally advanced rectal cancer: a prospective single-center study. J Magn Reson Imaging. 2017;46(1):175–83. https://doi.org/10.1002/jmri.25567.

    Article  PubMed  Google Scholar 

  65. • Nougaret S, Vargas HA, Lakhman Y, Sudre R, Do RK, Bibeau F, et al. Intravoxel incoherent motion–derived histogram metrics for assessment of response after combined chemotherapy and radiation therapy in rectal cancer: initial experience and comparison between single-section and volumetric analyses. Radiology. 2016;280(2):446–54. https://doi.org/10.1148/radiol.2016150702. The first study demonstrating the diagnostic power of median IVIM parameters and ADC in NCRT response assessment and reporting superior reproducibility of whole-tumor volume analysis compared with single-section ROI analysis.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bakke KM, Hole KH, Dueland S, Grøholt KK, Flatmark K, Ree AH, et al. Diffusion-weighted magnetic resonance imaging of rectal cancer: tumour volume and perfusion fraction predict chemoradiotherapy response and survival. Acta Oncol. 2017;56(6):813–8. https://doi.org/10.1080/0284186X.2017.1287951.

    Article  PubMed  Google Scholar 

  67. • Manikis GC, Marias K, Lambregts DM, Nikiforaki K, van Heeswijk MM, Bakers FC, et al. Diffusion weighted imaging in patients with rectal cancer: comparison between Gaussian and non-Gaussian models. PLoS One. 2017;12(9):e0184197. https://doi.org/10.1371/journal.pone.0184197. An analysis of four diffusion models (mono- and bi-exponential Gaussian and non-Gaussian) for 1.5T DW-MRI prior to chemoradiation.

    Article  PubMed  PubMed Central  Google Scholar 

  68. •• Shaverdian N, Yang Y, Hu P, Hart S, Sheng K, Lamb J, et al. Feasibility evaluation of diffusion-weighted imaging using an integrated MRI-radiotherapy system for response assessment to neoadjuvant therapy in rectal cancer. Br J Radiol. 2017;90(1071):20160739. https://doi.org/10.1259/bjr.20160739. The first report of feasibility of response prediction from ADC values obtained from on-board low-field .35T DW-MRI during the course of NCRT.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Percy Lee.

Ethics declarations

Conflict of Interest

Elaine Luterstein declares that she has no conflict of interest.

Ann Raldow declares that she has no conflict of interest.

Yingli Yang has received a speaking honorarium from ViewRay.

Percy Lee has received a speaking honorarium from ViewRay.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Radiation Therapy and Radiation Therapy Innovations in Colorectal Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luterstein, E., Raldow, A., Yang, Y. et al. Functional Imaging Predictors of Response to Chemoradiation. Curr Colorectal Cancer Rep 14, 106–114 (2018). https://doi.org/10.1007/s11888-018-0407-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-018-0407-8

Keywords

Navigation