Skip to main content

Advertisement

Log in

Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy

  • Molecular Biology (S Anant, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

The five individual members of the mammalian polo-like kinase family play non-redundant roles in centriole replication and maturation, mitotic progression, cytokinesis, and the DNA damage response. In human colorectal cancer, Plk1 and Plk4 are expressed at higher levels in tumor than adjacent normal mucosa, and the degree of overexpression correlates with adverse prognosis. In colorectal cancer cell lines, suppression of Plk1 activity leads to mitotic arrest and apoptosis, while inhibition of Plk4 activity reduces tumor growth and invasion. Inhibition of Plk1 or Plk4 in mice using orally bioavailable agents reduces the growth of human colorectal cancer xenografts. On the basis of these preclinical studies, clinical trials of several different targeted anti-Plk1 agents have been undertaken in patients with advanced solid tumors, and a phase I trial of the anti-Plk4 inhibitor CFI-400945 is currently accruing. Here, we review the rationale, results, and potential limitations of Plks as therapeutic targets. Evidence from genetic mouse models suggests that Plk1, Plk2, Plk3, and Plk4 may all possess tumor suppressive activity, particularly with aging. Thus, enthusiasm for the use of targeted Plk inhibitors in cancer therapy must be tempered somewhat by the potential for development of second primary tumors in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.

    CAS  PubMed  Google Scholar 

  2. Schwartzberg LS, Rivera F, Karthaus M, et al. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol. 2014;32:2240–7.

    CAS  PubMed  Google Scholar 

  3. Zitouni S, Nabais C, Jana SC, et al. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15:433–52. A good review of recent progress in understanding the structure/function of the Plk family members.

    CAS  PubMed  Google Scholar 

  4. Nam HJ, Naylor RM, van Deursen JM. Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol. 2015;25:65–73.

    CAS  PubMed  Google Scholar 

  5. Golsteyn RM, Schultz SJ, Bartek J, et al. Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J Cell Sci. 1994;107(Pt 6):1509–17.

    CAS  PubMed  Google Scholar 

  6. Wu ZQ, Liu X. Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing. Proc Natl Acad Sci U S A. 2008;105:1919–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Song B, Liu XS, Davis K, Liu X. Plk1 phosphorylation of Orc2 promotes DNA replication under conditions of stress. Mol Cell Biol. 2011;31:4844–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Toyoshima-Morimoto F, Taniguchi E, Shinya N, et al. Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature. 2001;410:215–20.

    CAS  PubMed  Google Scholar 

  9. Lane HA, Nigg EA. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol. 1996;135:1701–13.

    CAS  PubMed  Google Scholar 

  10. Joukov V, Walter JC, De Nicolo A. The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol Cell. 2014;55:578–91.

    CAS  PubMed  Google Scholar 

  11. Kong D, Farmer V, Shukla A, et al. Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. J Cell Biol. 2014;206:855–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Casenghi M, Meraldi P, Weinhart U, et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell. 2003;5:113–25.

    CAS  PubMed  Google Scholar 

  13. Feng Y, Yuan JH, Maloid SC, et al. Polo-like kinase 1-mediated phosphorylation of the GTP-binding protein Ran is important for bipolar spindle formation. Biochem Biophys Res Commun. 2006;349:144–52.

    CAS  PubMed  Google Scholar 

  14. Sumara I, Gimenez-Abian JF, Gerlich D, et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol. 2004;14:1712–22.

    CAS  PubMed  Google Scholar 

  15. Ahonen LJ, Kallio MJ, Daum JR, et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol. 2005;15:1078–89.

    CAS  PubMed  Google Scholar 

  16. Nishino M, Kurasawa Y, Evans R, et al. NudC is required for Plk1 targeting to the kinetochore and chromosome congression. Curr Biol. 2006;16:1414–21.

    CAS  PubMed  Google Scholar 

  17. Kang YH, Park JE, Yu LR, et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol Cell. 2006;24:409–22.

    CAS  PubMed  Google Scholar 

  18. Park CH, Park JE, Kim TS, et al. Mammalian polo-like kinase 1 (Plk1) promotes proper chromosome segregation by phosphorylating and delocalizing the PBIP1.CENP-Q complex from kinetochores. J Biol Chem. 2015;290:8569–81.

    CAS  PubMed  Google Scholar 

  19. Qian YW, Erikson E, Maller JL. Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol. 1999;19:8625–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Burkard ME, Randall CL, Larochelle S, et al. Chemical genetics reveals the requirement for polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci U S A. 2007;104:4383–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Fode C, Binkert C, Dennis JW. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol Cell Biol. 1996;16:4665–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Kleylein-Sohn J, Westendorf J, Le Clech M, et al. Plk4-induced centriole biogenesis in human cells. Dev Cell. 2007;13:190–202.

    CAS  PubMed  Google Scholar 

  23. Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL. Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol. 2011;21:428–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hudson JW, Kozarova A, Cheung P, et al. Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol. 2001;11:441–6.

    CAS  PubMed  Google Scholar 

  25. Rosario CO, Ko MA, Haffani YZ, et al. Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc Natl Acad Sci U S A. 2010;107:6888–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Holland AJ, Fachinetti D, Da Cruz S, et al. Polo-like kinase 4 controls centriole duplication but does not directly regulate cytokinesis. Mol Biol Cell. 2012;23:1838–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA. The polo kinase Plk4 functions in centriole duplication. Nat Cell Biol. 2005;7:1140–6.

    CAS  PubMed  Google Scholar 

  28. Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L, et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol. 2005;15:2199–207.

    CAS  PubMed  Google Scholar 

  29. Holland AJ, Fachinetti D, Zhu Q, et al. The autoregulated instability of polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 2012;26:2684–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Hiremath R, Mundaganur P, Sonwalkar P, et al. Cross sectional imaging of post partum headache and seizures. J Clin Diagn Res. 2014;8:RC01–5.

    PubMed Central  PubMed  Google Scholar 

  31. Simmons DL, Neel BG, Stevens R, et al. Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol Cell Biol. 1992;12:4164–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Li J, Ma W, Wang PY, et al. Polo-like kinase 2 activates an antioxidant pathway to promote the survival of cells with mitochondrial dysfunction. Free Radic Biol Med. 2014;73:270–7.

    PubMed  Google Scholar 

  33. Donohue PJ, Alberts GF, Guo Y, Winkles JA. Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem. 1995;270:10351–7.

    CAS  PubMed  Google Scholar 

  34. Xu D, Yao Y, Lu L, et al. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha. J Biol Chem. 2010;285:38944–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Andrysik Z, Bernstein WZ, Deng L, et al. The novel mouse polo-like kinase 5 responds to DNA damage and localizes in the nucleolus. Nucleic Acids Res. 2010;38:2931–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Burns TF, Fei P, Scata KA, et al. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol Cell Biol. 2003;23:5556–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Valenti F, Fausti F, Biagioni F, et al. Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle. 2011;10:4330–40.

    CAS  PubMed  Google Scholar 

  38. el Bahassi M, Myer DL, McKenney RJ, et al. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat Res. 2006;596:166–76.

    Google Scholar 

  39. Xie S, Wang Q, Wu H, et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem. 2001;276:36194–9.

    CAS  PubMed  Google Scholar 

  40. Xie S, Wu H, Wang Q, et al. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem. 2001;276:43305–12.

    CAS  PubMed  Google Scholar 

  41. Conn CW, Hennigan RF, Dai W, et al. Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res. 2000;60:6826–31.

    CAS  PubMed  Google Scholar 

  42. Zimmerman WC, Erikson RL. Polo-like kinase 3 is required for entry into S phase. Proc Natl Acad Sci U S A. 2007;104:1847–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Warnke S, Kemmler S, Hames RS, et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr Biol. 2004;14:1200–7.

    CAS  PubMed  Google Scholar 

  44. Chang J, Cizmecioglu O, Hoffmann I, Rhee K. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 2010;29:2395–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Krause A, Hoffmann I. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication. PLoS One. 2010;5, e9849.

    PubMed Central  PubMed  Google Scholar 

  46. Cizmecioglu O, Krause A, Bahtz R, et al. Plk2 regulates centriole duplication through phosphorylation-mediated degradation of Fbxw7 (human Cdc4). J Cell Sci. 2012;125:981–92.

    CAS  PubMed  Google Scholar 

  47. Jiang N, Wang X, Jhanwar-Uniyal M, et al. Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J Biol Chem. 2006;281:10577–82.

    CAS  PubMed  Google Scholar 

  48. Wang Q, Xie S, Chen J, et al. Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol. 2002;22:3450–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Wang J, Beauchemin M, Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011;23:2030–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. de Carcer G, Escobar B, Higuero AM, et al. Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression. Mol Cell Biol. 2011;31:1225–39.

    PubMed Central  PubMed  Google Scholar 

  51. Wolf G, Elez R, Doermer A, et al. Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene. 1997;14:543–9.

    CAS  PubMed  Google Scholar 

  52. Dietzmann K, Kirches E. von B et al. Increased human polo-like kinase-1 expression in gliomas. J Neurooncol. 2001;53:1–11.

    CAS  PubMed  Google Scholar 

  53. Strebhardt K, Kneisel L, Linhart C, et al. Prognostic value of pololike kinase expression in melanomas. JAMA. 2000;283:479–80.

    CAS  PubMed  Google Scholar 

  54. Kneisel L, Strebhardt K, Bernd A, et al. Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol. 2002;29:354–8.

    PubMed  Google Scholar 

  55. Mito K, Kashima K, Kikuchi H, et al. Expression of polo-like kinase (PLK1) in non-Hodgkin's lymphomas. Leuk Lymphoma. 2005;46:225–31.

    CAS  PubMed  Google Scholar 

  56. Yamada S, Ohira M, Horie H, et al. Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene. 2004;23:5901–11.

    CAS  PubMed  Google Scholar 

  57. Macmillan JC, Hudson JW, Bull S, et al. Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol. 2001;8:729–40. This study showed that both Plk1 and Plk4 are more highly expressed in colorectal cancer tissue than in paired normal colonic mucosa. Plk4 declined in normal colonic mucosa with aging.

    CAS  PubMed  Google Scholar 

  58. Weichert W, Kristiansen G, Schmidt M, et al. Polo-like kinase 1 expression is a prognostic factor in human colon cancer. World J Gastroenterol. 2005;11:5644–50.

    CAS  PubMed  Google Scholar 

  59. Takahashi T, Sano B, Nagata T, et al. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci. 2003;94:148–52.

    CAS  PubMed  Google Scholar 

  60. Knecht R, Elez R, Oechler M, et al. Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res. 1999;59:2794–7.

    CAS  PubMed  Google Scholar 

  61. Knecht R, Oberhauser C, Strebhardt K. PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer. 2000;89:535–6.

    CAS  PubMed  Google Scholar 

  62. Tokumitsu Y, Mori M, Tanaka S, et al. Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol. 1999;15:687–92.

    CAS  PubMed  Google Scholar 

  63. Ahr A, Karn T, Solbach C, et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet. 2002;359:131–2.

    PubMed  Google Scholar 

  64. Weichert W, Kristiansen G, Winzer KJ, et al. Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications. Virchows Arch. 2005;446:442–50.

    CAS  PubMed  Google Scholar 

  65. Wolf G, Hildenbrand R, Schwar C, et al. Polo-like kinase: a novel marker of proliferation: correlation with estrogen-receptor expression in human breast cancer. Pathol Res Pract. 2000;196:753–9.

    CAS  PubMed  Google Scholar 

  66. Takai N, Miyazaki T, Fujisawa K, et al. Expression of polo-like kinase in ovarian cancer is associated with histological grade and clinical stage. Cancer Lett. 2001;164:41–9.

    CAS  PubMed  Google Scholar 

  67. Takai N, Miyazaki T, Fujisawa K, et al. Polo-like kinase (PLK) expression in endometrial carcinoma. Cancer Lett. 2001;169:41–9.

    CAS  PubMed  Google Scholar 

  68. Weichert W, Schmidt M, Jacob J, et al. Overexpression of polo-like kinase 1 is a common and early event in pancreatic cancer. Pancreatology. 2005;5:259–65.

    CAS  PubMed  Google Scholar 

  69. Gray Jr PJ, Bearss DJ, Han H, et al. Identification of human polo-like kinase 1 as a potential therapeutic target in pancreatic cancer. Mol Cancer Ther. 2004;3:641–6.

    CAS  PubMed  Google Scholar 

  70. Weichert W, Schmidt M, Gekeler V, et al. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate. 2004;60:240–5.

    CAS  PubMed  Google Scholar 

  71. Guan R, Tapang P, Leverson JD, et al. Small interfering RNA-mediated polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res. 2005;65:2698–704.

    CAS  PubMed  Google Scholar 

  72. Liu X, Erikson RL. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci U S A. 2003;100:5789–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Gumireddy K, Reddy MV, Cosenza SC, et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7:275–86.

    CAS  PubMed  Google Scholar 

  74. Spankuch-Schmitt B, Bereiter-Hahn J, Kaufmann M, Strebhardt K. Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J Natl Cancer Inst. 2002;94:1863–77.

    CAS  PubMed  Google Scholar 

  75. Reagan-Shaw S, Ahmad N. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J. 2005;19:611–3.

    CAS  PubMed  Google Scholar 

  76. Spankuch-Schmitt B, Wolf G, Solbach C, et al. Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene. 2002;21:3162–71.

    CAS  PubMed  Google Scholar 

  77. Steegmaier M, Hoffmann M, Baum A, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol. 2007;17:316–22.

    CAS  PubMed  Google Scholar 

  78. Cogswell JP, Brown CE, Bisi JE, Neill SD. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ. 2000;11:615–23.

    CAS  PubMed  Google Scholar 

  79. Liu X, Lei M, Erikson RL. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol. 2006;26:2093–108.

    PubMed Central  PubMed  Google Scholar 

  80. Smith MR, Wilson ML, Hamanaka R, et al. Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun. 1997;234:397–405.

    CAS  PubMed  Google Scholar 

  81. Lu LY, Wood JL, Minter-Dykhouse K, et al. Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol Cell Biol. 2008;28:6870–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Baran V, Solc P, Kovarikova V, et al. Polo-like kinase 1 is essential for the first mitotic division in the mouse embryo. Mol Reprod Dev. 2013;80:522–34.

    CAS  PubMed  Google Scholar 

  83. Raab M, Kappel S, Kramer A, et al. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun. 2011;2:395.

    PubMed Central  PubMed  Google Scholar 

  84. Ma S, Charron J, Erikson RL. Role of Plk2 (Snk) in mouse development and cell proliferation. Mol Cell Biol. 2003;23:6936–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Villegas E, Kabotyanski EB, Shore AN, et al. Plk2 regulates mitotic spindle orientation and mammary gland development. Development. 2014;141:1562–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yang Y, Bai J, Shen R, et al. Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res. 2008;68:4077–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Myer DL, Robbins SB, Yin M, et al. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat Res. 2011;714:1–10.

    CAS  PubMed  Google Scholar 

  88. Coelho PA, Bury L, Sharif B, et al. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev Cell. 2013;27:586–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Ko MA, Rosario CO, Hudson JW, et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nat Genet. 2005;37:883–8.

    CAS  PubMed  Google Scholar 

  90. Harris RM, Weiss J, Jameson JL. Male hypogonadism and germ cell loss caused by a mutation in Polo-like kinase 4. Endocrinology. 2011;152:3975–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Sillibourne JE, Tack F, Vloemans N, et al. Autophosphorylation of polo-like kinase 4 and its role in centriole duplication. Mol Biol Cell. 2010;21:547–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Lingle WL, Lukasiewicz K, Salisbury JL. Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Adv Exp Med Biol. 2005;570:393–421.

    CAS  PubMed  Google Scholar 

  93. Fujiwara T, Bandi M, Nitta M, et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature. 2005;437:1043–7.

    CAS  PubMed  Google Scholar 

  94. Basto R, Brunk K, Vinadogrova T, et al. Centrosome amplification can initiate tumorigenesis in flies. Cell. 2008;133:1032–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Liu L, Zhang CZ, Cai M, et al. Downregulation of polo-like kinase 4 in hepatocellular carcinoma associates with poor prognosis. PLoS One. 2012;7, e41293.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Rosario CO, Kazazian K, Zih FS, et al. A novel role for Plk4 in regulating cell spreading and motility. Oncogene. 2014. This is the first demonstration of the promotion of cellular migration and invasion by Plk4, with identification of Plk4 in the protrusions of motile cells.

  97. Mason JM, Lin DC, Wei X, et al. Functional characterization of CFI-400945, a polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell. 2014;26:163–76. Extensive in vitro and preclinical evidence for Plk4 as a therapeutic target in cancer. The Plk4 inhibitor CFI-400945 inhibits growth of breast cancer and colorectal cancer xenografts in mice. CFI-400945 is currently being assessed in a Phase I clinical trial.

    CAS  PubMed  Google Scholar 

  98. Finetti P, Cervera N, Charafe-Jauffret E, et al. Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis. Cancer Res. 2008;68:767–76.

    CAS  PubMed  Google Scholar 

  99. Agarwal R, Gonzalez-Angulo AM, Myhre S, et al. Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res. 2009;15:3654–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Glinsky GV. Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle. 2006;5:1208–16.

    CAS  PubMed  Google Scholar 

  101. Marthiens V, Rujano MA, Pennetier C, et al. Centrosome amplification causes microcephaly. Nat Cell Biol. 2013;15:731–40.

    CAS  PubMed  Google Scholar 

  102. Benetatos L, Dasoula A, Hatzimichael E, et al. Polo-like kinase 2 (SNK/PLK2) is a novel epigenetically regulated gene in acute myeloid leukemia and myelodysplastic syndromes: genetic and epigenetic interactions. Ann Hematol. 2011;90:1037–45.

    CAS  PubMed  Google Scholar 

  103. Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A. 2008;105:15535–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Smith P, Syed N, Crook T. Epigenetic inactivation implies a tumor suppressor function in hematologic malignancies for Polo-like kinase 2 but not polo-like kinase 3. Cell Cycle. 2006;5:1262–4.

    CAS  PubMed  Google Scholar 

  105. Syed N, Smith P, Sullivan A, et al. Transcriptional silencing of polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Blood. 2006;107:250–6.

    CAS  PubMed  Google Scholar 

  106. Hatzimichael E, Dasoula A, Benetatos L, et al. Study of specific genetic and epigenetic variables in multiple myeloma. Leuk Lymphoma. 2010;51:2270–4.

    CAS  PubMed  Google Scholar 

  107. Pellegrino R, Calvisi DF, Ladu S, et al. Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology. 2010;51:857–68. A comprehensive study of the expression of Plks in human hepatoma. The authors suggest that Plk1 acts as an oncogene, while Plk2-4 have tumor suppressive activity. This has implications for long term use of first generation Plk1 inhibitors, which can affect Plk3 and Plk4 activity.

    CAS  PubMed  Google Scholar 

  108. Ju W, Yoo BC, Kim IJ, et al. Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res. 2009;18:47–56.

    CAS  PubMed  Google Scholar 

  109. de Viron E, Knoops L, Connerotte T, et al. Impaired up-regulation of polo-like kinase 2 in B-cell chronic lymphocytic leukaemia lymphocytes resistant to fludarabine and 2-chlorodeoxyadenosine: a potential marker of defective damage response. Br J Haematol. 2009;147:641–52.

    PubMed  Google Scholar 

  110. Syed N, Coley HM, Sehouli J, et al. Polo-like kinase Plk2 is an epigenetic determinant of chemosensitivity and clinical outcomes in ovarian cancer. Cancer Res. 2011;71:3317–27.

    CAS  PubMed  Google Scholar 

  111. Tan LB, Chen KT, Yuan YC, et al. Identification of urine PLK2 as a marker of bladder tumors by proteomic analysis. World J Urol. 2010;28:117–22.

    CAS  PubMed  Google Scholar 

  112. Dai W, Li Y, Ouyang B, et al. PRK, a cell cycle gene localized to 8p21, is downregulated in head and neck cancer. Gene Chromosom Cancer. 2000;27:332–6.

    CAS  Google Scholar 

  113. Li B, Ouyang B, Pan H, et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem. 1996;271:19402–8.

    CAS  PubMed  Google Scholar 

  114. Ando K, Ozaki T, Yamamoto H, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem. 2004;279:25549–61.

    CAS  PubMed  Google Scholar 

  115. Weichert W, Denkert C, Schmidt M, et al. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer. 2004;90:815–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Rodel F, Keppner S, Capalbo G, et al. Polo-like kinase 1 as predictive marker and therapeutic target for radiotherapy in rectal cancer. Am J Pathol. 2010;177:918–29. The authors show that higher pre-treatment Plk1 expression in rectal cancer predicts an inferior response to neoadjuvant radiation.

    PubMed Central  PubMed  Google Scholar 

  117. Sillars-Hardebol AH, Carvalho B, de Wit M, et al. Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-carcinoma progression. Tumour Biol. 2010;31:89–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24:287–91.

    CAS  PubMed  Google Scholar 

  119. Liu X, Erikson RL. Activation of Cdc2/cyclin B and inhibition of centrosome amplification in cells depleted of Plk1 by siRNA. Proc Natl Acad Sci U S A. 2002;99:8672–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Dohner H, Lubbert M, Fiedler W, et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood. 2014;124:1426–33. This report laid the foundation for Breakthrough Therapy designation from the FDA for volasertib, highlighting its potential for treating patients with acute myeloid leukemia. Based on these results, a large multicenter phase III double-blind randomized placebo-controlled trial was initiated with low-dose cytarabine ± volasertib for patients aged 65 years old or older with previously untreated AML who are ineligible for intensive remission induction therapy.

    PubMed Central  PubMed  Google Scholar 

  121. Rudolph D, Impagnatiello MA, Blaukopf C, et al. Efficacy and mechanism of action of volasertib, a potent and selective inhibitor of polo-like kinases, in preclinical models of acute myeloid leukemia. J Pharmacol Exp Ther. 2015;352:579–89.

    CAS  PubMed  Google Scholar 

  122. Rudolph D, Steegmaier M, Hoffmann M, et al. BI 6727, a polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15:3094–102.

    CAS  PubMed  Google Scholar 

  123. Schoffski P, Awada A, Dumez H, et al. A phase I, dose-escalation study of the novel polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours. Eur J Cancer. 2012;48:179–86. First-in-man phase I dose-escalation trial of Volasertib (subsequently the first Plk1 inhibitor to proceed to phase III testing), in patients with progressive advanced or metastatic solid tumors. Preliminary evidence of antitumor activity in patients formed the basis for further clinical testing.

    PubMed  Google Scholar 

  124. Stadler WM, Vaughn DJ, Sonpavde G, et al. An open-label, single-arm, phase 2 trial of the polo-like kinase inhibitor volasertib (BI 6727) in patients with locally advanced or metastatic urothelial cancer. Cancer. 2014;120:976–82.

    CAS  PubMed  Google Scholar 

  125. Janning M, Fiedler W. Volasertib for the treatment of acute myeloid leukemia: a review of preclinical and clinical development. Future Oncol. 2014;10:1157–65.

    CAS  PubMed  Google Scholar 

  126. Gjertsen BT, Schoffski P. Discovery and development of the polo-like kinase inhibitor volasertib in cancer therapy. Leukemia. 2015;29:11–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Schoffski P, Blay JY, De Greve J, et al. Multicentric parallel phase II trial of the polo-like kinase 1 inhibitor BI 2536 in patients with advanced head and neck cancer, breast cancer, ovarian cancer, soft tissue sarcoma and melanoma. The first protocol of the European Organization for Research and Treatment of Cancer (EORTC) Network Of Core Institutes (NOCI). Eur J Cancer. 2010;46:2206–15.

    PubMed  Google Scholar 

  128. Hofheinz RD, Al-Batran SE, Hochhaus A, et al. An open-label, phase I study of the polo-like kinase-1 inhibitor, BI 2536, in patients with advanced solid tumors. Clin Cancer Res. 2010;16:4666–74.

    CAS  PubMed  Google Scholar 

  129. Sebastian M, Reck M, Waller CF, et al. The efficacy and safety of BI 2536, a novel Plk-1 inhibitor, in patients with stage IIIB/IV non-small cell lung cancer who had relapsed after, or failed, chemotherapy: results from an open-label, randomized phase II clinical trial. J Thorac Oncol. 2010;5:1060–7.

    PubMed  Google Scholar 

  130. Mross K, Frost A, Steinbild S, et al. Phase I dose escalation and pharmacokinetic study of BI 2536, a novel polo-like kinase 1 inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2008;26:5511–7.

    CAS  PubMed  Google Scholar 

  131. Vose JM, Friedberg JW, Waller EK, et al. The Plk1 inhibitor BI 2536 in patients with refractory or relapsed non-Hodgkin lymphoma: a phase I, open-label, single dose-escalation study. Leuk Lymphoma. 2013;54:708–13.

    CAS  PubMed  Google Scholar 

  132. Ellis PM, Chu QS, Leighl N, et al. A phase I open-label dose-escalation study of intravenous BI 2536 together with pemetrexed in previously treated patients with non-small-cell lung cancer. Clin Lung Cancer. 2013;14:19–27.

    CAS  PubMed  Google Scholar 

  133. Mross K, Dittrich C, Aulitzky WE, et al. A randomised phase II trial of the polo-like kinase inhibitor BI 2536 in chemo-naive patients with unresectable exocrine adenocarcinoma of the pancreas - a study within the Central European Society Anticancer Drug Research (CESAR) collaborative network. Br J Cancer. 2012;107:280–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Emmitte KA, Adjabeng GM, Andrews CW, et al. Design of potent thiophene inhibitors of polo-like kinase 1 with improved solubility and reduced protein binding. Bioorg Med Chem Lett. 2009;19:1694–7.

    CAS  PubMed  Google Scholar 

  135. Emmitte KA, Andrews CW, Badiang JG, et al. Discovery of thiophene inhibitors of polo-like kinase. Bioorg Med Chem Lett. 2009;19:1018–21.

    CAS  PubMed  Google Scholar 

  136. Olmos D, Barker D, Sharma R, et al. Phase I study of GSK461364, a specific and competitive Polo-like kinase 1 inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2011;17:3420–30.

    CAS  PubMed  Google Scholar 

  137. Laquerre S, Sung CM, Gilmartin AG, et al. A potent and selective Polo-like kinase 1 (Plk1) Inhibitor (GSK461364) induces cell cycle arrest and growth inhibition of cancer cell In 98th AACR Annual Meeting. Los Angeles, CA, April 14–18, Abstract number 5389: 2007.

  138. Sutton D, Diamond M, Faucette L, et al. GSK923295A, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. In 98th AACR Annual Meeting Los Angeles, CA, April 14–18, Abstract number 1522: 2007.

  139. Garland LL, Taylor C, Pilkington DL, et al. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin Cancer Res. 2006;12:5182–9.

    CAS  PubMed  Google Scholar 

  140. Takagi M, Honmura T, Watanabe S, et al. In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Investig New Drugs. 2003;21:387–99.

    CAS  Google Scholar 

  141. Tanaka H, Ohshima N, Ikenoya M, et al. HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. Cancer Res. 2003;63:6942–7.

    CAS  PubMed  Google Scholar 

  142. Patnaik A, Forero L, Goetz A, et al. HMN-214, a novel oral antimicrotubular agent and inhibitor of polo-like- and cyclin-dependent kinases: clinical, pharmacokinetic (PK) and pharmacodynamic (PD) relationships observed in a phase I trial of a daily × 5 schedule every 28 days. Proc Am Soc Clin Oncol. 2003; 22 Suppl: abstr 514.

  143. Valsasina B, Beria I, Alli C, et al. NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol Cancer Ther. 2012;11:1006–16.

    CAS  PubMed  Google Scholar 

  144. Beria I, Bossi RT, Brasca MG, et al. NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorg Med Chem Lett. 2011;21:2969–74.

    CAS  PubMed  Google Scholar 

  145. Ramanathan RK, Hamburg SI, Borad MJ, et al. A phase I dose escalation study of TKM-080301, a RNAi therapeutic directed against PLK1, in patients with advanced solid tumors. In 104th AACR Annual Meeting. Washington, D.C., April 6–10, Cancer Res. 73(8 Suppl) Abstract LB:289. 2013.

  146. Bowles DW, Diamond JR, Lam ET, et al. Phase I study of oral rigosertib (ON 01910.Na), a dual inhibitor of the PI3K and Plk1 pathways, in adult patients with advanced solid malignancies. Clin Cancer Res. 2014;20:1656–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Jimeno A, Chan A, Cusatis G, et al. Evaluation of the novel mitotic modulator ON 01910.Na in pancreatic cancer and preclinical development of an ex vivo predictive assay. Oncogene. 2009;28:610–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Jimeno A, Li J, Messersmith WA, et al. Phase I study of ON 01910.Na, a novel modulator of the polo-like kinase 1 pathway, in adult patients with solid tumors. J Clin Oncol. 2008;26:5504–10.

    CAS  PubMed  Google Scholar 

  149. Ohnuma T, Lehrer D, Ren C, et al. Phase 1 study of intravenous rigosertib (ON 01910.Na), a novel benzyl styryl sulfone structure producing G2/M arrest and apoptosis, in adult patients with advanced cancer. Am J Cancer Res. 2013;3:323–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Ma WW, Messersmith WA, Dy GK, et al. Phase I study of Rigosertib, an inhibitor of the phosphatidylinositol 3-kinase and polo-like kinase 1 pathways, combined with gemcitabine in patients with solid tumors and pancreatic cancer. Clin Cancer Res. 2012;18:2048–55.

    CAS  PubMed  Google Scholar 

  151. Komrokji RS, Raza A, Lancet JE, et al. Phase I clinical trial of oral rigosertib in patients with myelodysplastic syndromes. Br J Haematol. 2013;162:517–24.

    CAS  PubMed  Google Scholar 

  152. Johnson EF, Stewart KD, Woods KW, et al. Pharmacological and functional comparison of the polo-like kinase family: insight into inhibitor and substrate specificity. Biochemistry. 2007;46:9551–63.

    CAS  PubMed  Google Scholar 

  153. Reindl W, Yuan J, Kramer A, et al. Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem Biol. 2008;15:459–66.

    CAS  PubMed  Google Scholar 

  154. Yuan J, Sanhaji M, Kramer A, et al. Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am J Pathol. 2011;179:2091–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Judge AD, Robbins M, Tavakoli I, et al. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest. 2009;119:661–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Spankuch B, Steinhauser I, Wartlick H, et al. Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles. Neoplasia. 2008;10:223–34.

    PubMed Central  PubMed  Google Scholar 

  157. Steinhauser IM, Langer K, Strebhardt KM, Spankuch B. Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials. 2008;29:4022–8.

    CAS  PubMed  Google Scholar 

  158. Steinhauser I, Langer K, Strebhardt K, Spankuch B. Uptake of plasmid-loaded nanoparticles in breast cancer cells and effect on Plk1 expression. J Drug Target. 2009;17:627–37.

    CAS  PubMed  Google Scholar 

  159. Sampson PB, Liu Y, Patel NK, et al. The discovery of polo-like kinase 4 inhibitors: design and optimization of Spiro[cyclopropane-1,3′[3H]indol]-2′(1′H)-ones as orally bioavailable antitumor agents. J Med Chem. 2014.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Karineh Kazazian, Olga Brashavitskaya, Francis S.W. Zih, David Berger-Richardson, Roland S.Z. Xu, Karina Pacholczyk, Jennifer Macmillan, and Carol J. Swallow declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol J. Swallow.

Additional information

This article is part of the Topical Collection on Molecular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazazian, K., Brashavitskaya, O., Zih, F.S.W. et al. Polo-Like Kinases in Colorectal Cancer: Potential for Targeted Therapy. Curr Colorectal Cancer Rep 11, 187–199 (2015). https://doi.org/10.1007/s11888-015-0275-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-015-0275-4

Keywords

Navigation