Non-HDL Cholesterol or apoB: Which to Prefer as a Target for the Prevention of Atherosclerotic Cardiovascular Disease?


Purpose of Review

Guidelines propose using non-HDL cholesterol or apolipoprotein (apo) B as a secondary treatment target to reduce residual cardiovascular risk of LDL-targeted therapies. This review summarizes the strengths, weaknesses, opportunities, and threats (SWOT) of using apoB compared with non-HDL cholesterol.

Recent Findings

Non-HDL cholesterol, calculated as total-HDL cholesterol, includes the assessment of remnant lipoprotein cholesterol, an additional risk factor independent of LDL cholesterol. ApoB is a direct measure of circulating numbers of atherogenic lipoproteins, and its measurement can be standardized across laboratories worldwide. Discordance analysis of non-HDL cholesterol versus apoB demonstrates that apoB is the more accurate marker of cardiovascular risk. Baseline and on-treatment apoB can identify elevated numbers of small cholesterol-depleted LDL particles that are not reflected by LDL and non-HDL cholesterol.


ApoB is superior to non-HDL cholesterol as a secondary target in patients with mild-to-moderate hypertriglyceridemia (175–880 mg/dL), diabetes, obesity or metabolic syndrome, or very low LDL cholesterol < 70 mg/dL. When apoB is not available, non-HDL cholesterol should be used to supplement LDLC.

This is a preview of subscription content, log in to check access.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    •• Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41:111–88 Most recent European guideline for the prevention of dyslipidemia-related cardiovascular risk.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Anderson TJ, Grégoire J, Pearson GJ, Barry AR, Couture P, Dawes M, et al. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2016;32:1263–82.

    PubMed  Google Scholar 

  3. 3.

    Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;73:e285–350.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 2017;38:2459–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Cholesterol Treatment Trialists’ (CTT) collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    CAS  PubMed  Google Scholar 

  6. 6.

    Sinning D, Landmesser U. Is there a need to revise goals in the management of dyslipidemias? Curr Cardiol Rep. 2019;21:51.

    PubMed  Google Scholar 

  7. 7.

    Packard CJ. Determinants of achieved LDL cholesterol and “non-HDL” cholesterol in the management of dyslipidemias. Curr Cardiol Rep. 2018;20:60.

    PubMed  Google Scholar 

  8. 8.

    Sandesara PB, Virani SS, Fazio S, Shapiro MD. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr Rev. 2019;40:537–57.

    PubMed  Google Scholar 

  9. 9.

    •• Langlois MR, Nordestgaard BG, Langsted A, Chapman MJ, Aakre KM, Baum H, et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Clin Chem Lab Med. 2020;58:496–517 Summary of consensus recommendations providing practical guidance for measuring and interpreting atherogenic lipid profiles in the fasting and nonfasting state.

    CAS  PubMed  Google Scholar 

  10. 10.

    Nordestgaard BG. A test in context: lipid profile, fasting versus non-fasting. J Am Coll Cardiol. 2017;70:1637–46.

    PubMed  Google Scholar 

  11. 11.

    Miller M, Stone J, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118:547–63.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tsimikas S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol. 2017;69:692–711.

    CAS  PubMed  Google Scholar 

  14. 14.

    Nordestgaard BG, Langsted A. Lipoprotein(a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57:1953–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Willeit P, Ridker PM, Nestel PJ, Simes J, Tonkin AM, Pedersen TR, et al. Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet. 2018;392:1311–20.

    CAS  PubMed  Google Scholar 

  16. 16.

    Contois JH, McConnell JP, Sethi AA, Csako G, Devaraj S, Hoefner DM, et al. Apolipoprotein B and cardiovascular disease risk: position statement from the AACC lipoproteins and vascular disease working group on best practices. Clin Chem. 2009;55:407–19.

    CAS  PubMed  Google Scholar 

  17. 17.

    • Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 2019. insightful review of where we are in understanding the concept of the apoB particle model in atherogenesis.

  18. 18.

    Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, et al. European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Consensus Panel. Fasting is not routinely required for a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points – a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J. 2016;37:1944–58.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, et al. Emerging risk factors collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.

    PubMed  Google Scholar 

  20. 20.

    Colantonio LD, Bittner V, Reynolds K, Levitan EB, Rosenson RS, Banach M, et al. Association of serum lipids and coronary heart disease in contemporary observational studies. Circulation. 2016;133:256–64.

    CAS  PubMed  Google Scholar 

  21. 21.

    Liu H, Deng X, Peng Y, Zeng Q, Song Z, He W, et al. Meta-analysis of serum non-high-density lipoprotein cholesterol and risk of coronary heart disease in the general population. Clin Chim Acta. 2017;471:23–8.

    CAS  PubMed  Google Scholar 

  22. 22.

    Liao P, Zeng R, Zhao X, Guo L, Zhang M. Prognostic value of non-high-density lipoprotein cholesterol for mortality in patients with coronary heart disease: a systematic review and meta-analysis. Int J Cardiol. 2017;227:950–5.

    PubMed  Google Scholar 

  23. 23.

    Sniderman AD, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4:337–45.

    PubMed  Google Scholar 

  24. 24.

    Welsh C, Celis-Morales CA, Brown R, Mackay DF, Lewsey J, Mark PB, et al. Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease. Data from UK biobank. Circulation. 2019;140:542–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 2012;307:1302–9.

    CAS  PubMed  Google Scholar 

  26. 26.

    Robinson JG, Wang S, Jacobson TA. Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and non high-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials. Am J Cardiol. 2012;110:1468–76.

    CAS  PubMed  Google Scholar 

  27. 27.

    Arsenault BJ, Rana JS, Stroes ES, Després JP, Shah PK, Kastelein JJ, et al. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol. 2010;55:35–41.

    CAS  Google Scholar 

  28. 28.

    Masana L, Ibarretxe D, Heras M, Cabré A, Ferré R, Merino J, et al. Substituting non-HDL cholesterol with LDL as a guide for lipid-lowering therapy increases the number of patients with indication for therapy. Atherosclerosis. 2013;226:471–5.

    CAS  PubMed  Google Scholar 

  29. 29.

    •• Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, et al. European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of LDL cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem. 2018;64:1006–33 Joint consensus statement from experts in lipidology and laboratory medicine highlighting analytical and clinical challenges of measuring atherogenic lipoproteins.

    CAS  PubMed  Google Scholar 

  30. 30.

    Delatour V, Clouet-Foraison N, Gaie-Levrel F, Marcovina SM, Hoofnagle AN, Kuklenyik Z, et al. Comparability of lipoprotein particle number concentrations across ES-DMA, NMR, LC-MS/MS, Immunonephelometry, and VAP: in search of a candidate reference measurement procedure for apoB and non-HDL-P standardization. Clin Chem. 2018;64:1485–95.

    PubMed  Google Scholar 

  31. 31.

    Mora S, Buring JE, Ridker PM. Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation. 2014;129:553–61.

    CAS  PubMed  Google Scholar 

  32. 32.

    Lawler PR, Akinkuolie AO, Ridker PM, Sniderman AD, Buring JE, Glynn RJ, et al. Discordance between circulating atherogenic cholesterol mass and lipoprotein particle concentration in relation to future coronary events in women. Clin Chem. 2017;63:870–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    • Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41:99–109 Recent overview that brings together multiple fields of investigation to support the treatment of elevated TG-rich lipoproteins.

    PubMed  Google Scholar 

  34. 34.

    Sniderman AD, Couture P, Martin SS, DeGraaf J, Lawler PR, Cromwell WC, et al. Hypertriglyceridemia and cardiovascular risk: a cautionary note about metabolic confounding. J Lipid Res. 2018;59:1266–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Langlois MR, Nordestgaard BG. Which lipids should be analyzed for diagnostic workup and follow-up of patients with hyperlipidemias? Curr Cardiol Rep. 2018;20:88.

    PubMed  Google Scholar 

  36. 36.

    Miller WG, Myers GL, Sakurabayashi I, Bachmann LM, Caudill SP, Dziekonski A, et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem. 2010;56:977–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Langlois MR, Descamps OS, van der Laarse A, Weykamp C, Baum H, Pulkki K, et al. Clinical impact of direct HDLc and LDLc method bias in hypertriglyceridemia. A simulation study of the EAS-EFLM collaborative project group. Atherosclerosis. 2014;233:83–90.

    CAS  PubMed  Google Scholar 

  38. 38.

    Martin SS, Blaha MJ, Elshazly MB, Toth PP, Kwiterovich PO, Blumenthal RS, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA. 2013;310:2061–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Elshazly MB, Martin SS, Blaha MJ, Joshi PH, Toth PP, McEvoy JW, et al. Non-high-density lipoprotein cholesterol, guideline targets, and population percentiles for secondary prevention in 1.3 million adults: the VLDL-2 study (very large database of lipids). J Am Coll Cardiol. 2013;62:1960–5.

    CAS  PubMed  Google Scholar 

  40. 40.

    Cole TG, Contois JH, Csako C, McConnell JP, Remaley AT, Devaraj S, et al. Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC lipoprotein and vascular diseases division working group on best practices. Clin Chem. 2013;59:752–70.

    CAS  PubMed  Google Scholar 

  41. 41.

    Sniderman AD, de Graaf J, Thanassoulis G, Tremblay AJ, Martin SS, Couture P. The spectrum of type III hyperlipoproteinemia. J Clin Lipidol. 2018;12:1383–9.

    PubMed  Google Scholar 

  42. 42.

    Boot CS, Middling E, Allen J, Neely RDG. Evaluation of the non-HDL cholesterol to apolipoprotein B ratio as a screening test for dysbetalipoproteinemia. Clin Chem. 2019;65:313–20.

    CAS  PubMed  Google Scholar 

  43. 43.

    Sathiyakumar V, Park J, Quispe R, Elshazy MB, Michos ED, Banach M, et al. Impact of novel low-density lipoprotein-cholesterol assessment on the utility of secondary non-high-density lipoprotein-cholesterol and apolipoprotein B targets in selected worldwide dyslipidemia guidelines. Circulation. 2018;138:244–54.

    CAS  PubMed  Google Scholar 

  44. 44.

    Robinson JG, Wang S, Smith BJ, Jacobson TA. Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease. J Am Coll Cardiol. 2009;53:316–22.

    CAS  PubMed  Google Scholar 

  45. 45.

    Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316:1289–97.

    CAS  PubMed  Google Scholar 

  46. 46.

    Thanassoulis G, Williams K, Ye K, Brook R, Couture P, Lawler PR, et al. Relations of change in plasma levels of LDL-C, non-HDL-C and apoB with risk reduction from statin therapy: a meta-analysis of randomized trials. J Am Heart Assoc. 2014;3:e000759.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    • Khan SU, Khan MU, Valavoor S, Khan MS, Okunrintemi V, Mamas MA, et al. Association of lowering apolipoprotein B with cardiovascular outcomes across various lipid-lowering therapies: systematic review and meta-analysis of trials. Eur J Prev Cardiol. 2019. meta-analysis of association of lowering apoB with clinical benefit in 29 statin and nonstatin trials.

  48. 48.

    Ference BA, Kastelein JJP, Ginsberg HN, Chapman MJ, Nicholls SJ, Ray KK, et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA. 2017;318:947–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, et al. Association of Triglyceride-Lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321:364–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    van den Broek I, Romijn FP, Nouta J, van der Laarse A, Drijfhout JW, Smit NP, et al. Automated multiplex LC-MS/MS assay for quantifying serum apolipoproteins A-I, B, C-I, C-II, C-III, and E with qualitative apolipoprotein E phenotyping. Clin Chem. 2016;62:188–97.

    PubMed  Google Scholar 

  51. 51.

    Dittrich J, Adam M, Maas H, Hecht M, Reinicke M, Ruhaak LR, et al. Targeted on-line SPE-LC-MS/MS assay for the quantitation of 12 apolipoproteins from human blood. Proteomics. 2018;18(3–4).

  52. 52.

    Pechlaner R, Tsimikas S, Yin X, Willeit P, Baig F, Santer P, et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J Am Coll Cardiol. 2017;69:789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jin Z, Collier TS, Dai DLY, Chen V, Hollander Z, Ng RT, et al. Development and validation of apolipoprotein AI-associated lipoprotein proteome panel for the prediction of cholesterol efflux capacity and coronary artery disease. Clin Chem. 2019;65:282–90.

    CAS  PubMed  Google Scholar 

  54. 54.

    •• Ruhaak LR, van der Laarse A, Cobbaert CM. Apolipoprotein profiling as a personalized approach to the diagnosis and treatment of dyslipidaemia. Ann Clin Biochem. 2019;56:338–56 Excellent review of evidence for the potential use of apolipoprotein profiles in personalized medicine.

    Google Scholar 

  55. 55.

    Sathiyakumar V, Park J, Golozar A, Lazo M, Quispe R, Guallar E, et al. Fasting versus nonfasting and low-density lipoprotein cholesterol accuracy. Circulation. 2018;137:10–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Martin SS, Giugliano RP, Murphy SA, Wasserman SM, Stein EA, Ceška R, et al. Comparison of Low-Density Lipoprotein Cholesterol Assessment by Martin/Hopkins Estimation, Friedewald Estimation, and Preparative Ultracentrifugation: Insights From the FOURIER Trial. JAMA Cardiol. 2018;3:749–53.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sniderman AD. Differential response of cholesterol particle measures of atherogenic lipoproteins to LDL-lowering therapy: implications for clinical practice. J Clin Lipidol. 2008;2:36–42.

    PubMed  Google Scholar 

  58. 58.

    Wong ND, Chuang J, Zhao Y, Rosenblit PD. Residual dyslipidemia according to low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B among statin-treated US adults: National Health and nutrition examination survey 2009-2010. J Clin Lipidol. 2015;9:525–32.

    PubMed  Google Scholar 

  59. 59.

    Ridker PM, Mora S, Rose L, JUPITER Trial Study Group. Percent reduction in LDL cholesterol following high-intensity statin therapy: potential implications for guidelines and for the prescription of emerging lipid-lowering agents. Eur Heart J. 2016;37:1373–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Ray KK, Ginsberg HN, Davidson MH, Pordy R, Bessac L, Minini P, et al. Reductions in atherogenic lipids and major cardiovascular events: a pooled analysis of 10 ODYSSEY trials comparing alirocumab with control. Circulation. 2016;134:1931–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Rosenson RS, Jacobson TA, Preiss D, Djedjos CS, Dent R, Bridges I, et al. Efficacy and safety of the PCSK9 inhibitor Evolocumab in patients with mixed hyperlipidemia. Cardiovasc Drugs Ther. 2016;30:305–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Mora S, Caulfield MP, Wohlgemuth J, Chen Z, Superko HR, Rowland CM, et al. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo. The justification for the use of statins in prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial. Circulation. 2015;132:2220–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lawler PR, Akinkuolie AO, Chu AY, Shah SH, Kraus WE, Craig D, et al. Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low low-density lipoprotein cholesterol. J Am Heart Assoc. 2017;6:e005549.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Kohli-Lynch CN, Thanassoulis G, Moran AE, Sniderman AD. The clinical utility of apoB versus LDL-C/non-HDL-C. Clin Chim Acta. 2020;508:103–8.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Sniderman AD, Robinson JG. ApoB in clinical care: pro and con. Atherosclerosis. 2019;282:169–75.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michel R. Langlois.

Ethics declarations

Conflict of Interest

Michel R. Langlois and Allan D. Sniderman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Langlois, M.R., Sniderman, A.D. Non-HDL Cholesterol or apoB: Which to Prefer as a Target for the Prevention of Atherosclerotic Cardiovascular Disease?. Curr Cardiol Rep 22, 67 (2020).

Download citation


  • Atherosclerotic cardiovascular disease
  • Treatment targets
  • LDL cholesterol
  • Non-HDL cholesterol
  • Apolipoprotein B