The Role of MRI in Prognostic Stratification of Cardiomyopathies

Abstract

Purpose of the Review

The aim of this review was to discuss the role of cardiac magnetic resonance (CMR) for the prognostic stratification of cardiomyopathies, highlighting strengths and limitations.

Recent Findings

CMR is considered as a diagnostic pillar in the management of non-ischemic cardiomyopathies. Over the last years, attention has shifted from CMR’s diagnostic capability towards prognostication in the various settings of cardiomyopathies.

Summary

CMR is considered the gold standard imaging technique for the evaluation of ventricular volumes and systolic function as well as providing non-invasive virtual-histology by means of specific myocardial tissue characterization pulse sequences. CMR is an additive tool to risk stratifying patients and to identify those that require strict monitoring and more aggressive treatment.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, et al. Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging. 2017;45:1055–67.

    PubMed  Google Scholar 

  2. 2.

    Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2015;16:14–22.

    PubMed  Google Scholar 

  3. 3.

    Aquaro GD, Todiere G, Strata E, Barison A, Di Bella G, Lombardi M. Usefulness of India ink artifact in steady-state free precession pulse sequences for detection and quantification of intramyocardial fat. J Magn Reson Imaging. 2014;40:126–32.

    PubMed  Google Scholar 

  4. 4.

    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–6.

    PubMed  Google Scholar 

  5. 5.

    Todiere G, Neglia D, Ghione S, Fommei E, Capozza P, Guarini G, et al. Right ventricular remodelling in systemic hypertension: a cardiac MRI study. Heart. 2011;97:1257–61.

    PubMed  Google Scholar 

  6. 6.

    Medvedofsky D, Maffessanti F, Weinert L, Tehrani DM, Narang A, Addetia K, et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality. JACC Cardiovasc Imaging. 2018;11:1569–79.

    PubMed  Google Scholar 

  7. 7.

    • McCrohon JA, Moon JCC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJS, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation. 2003;108:54–9 This study demonstrated the effectiveness of cardiac magnetic resonance to distinguish between ischemic and non-ischemic etiology of left ventricular dysfunction.

    CAS  PubMed  Google Scholar 

  8. 8.

    Masci PG, Barison A, Aquaro GD, Pingitore A, Mariotti R, Balbarini A, et al. Myocardial delayed enhancement in paucisymptomatic nonischemic dilated cardiomyopathy. Int J Cardiol. 2012;157:43–7.

    PubMed  Google Scholar 

  9. 9.

    Grigoratos C, Liga R, Bennati E, Barison A, Todiere G, Aquaro GD, et al. Magnetic resonance imaging correlates of left bundle branch disease in patients with nonischemic cardiomyopathy. Am J Cardiol. 2018;121:370–6.

    PubMed  Google Scholar 

  10. 10.

    Di Marco A, Anguera I, Schmitt M, Klem I, Neilan TG, White JA, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 2017;5:28–38.

    PubMed  Google Scholar 

  11. 11.

    Barison A, Aimo A, Ortalda A, Todiere G, Grigoratos C, Passino C, et al. Late gadolinium enhancement as a predictor of functional recovery, need for defibrillator implantation and prognosis in non-ischemic dilated cardiomyopathy. Int J Cardiol. 2018;250:195–200.

    PubMed  Google Scholar 

  12. 12.

    Becker MAJ, Cornel JH, van de Ven PM, van Rossum AC, Allaart CP, Germans T. The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy: a review and meta-analysis. JACC Cardiovasc Imaging. 2018;11:1274–84.

    PubMed  Google Scholar 

  13. 13.

    Barison A, Aimo A, Mirizzi G, Castiglione V, Ripoli A, Panchetti L, et al. The extent and location of late gadolinium enhancement predict defibrillator shock and cardiac mortality in patients with non-ischaemic dilated cardiomyopathy. Int J Cardiol. 2020;307:180–6.

    PubMed  Google Scholar 

  14. 14.

    Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375:1221–30.

    PubMed  Google Scholar 

  15. 15.

    Elming MB, Hammer-Hansen S, Voges I, Nyktari E, Raja AA, Svendsen JH, et al. Myocardial fibrosis and the effect of primary prophylactic defibrillator implantation in patients with non-ischemic systolic heart failure-DANISH-MRI. Am Heart J. 2020;221:165–76.

    PubMed  Google Scholar 

  16. 16.

    Kalra R, Shenoy C. Identifying nonischemic cardiomyopathy patients who would benefit from an implantable cardioverter-defibrillator: can late gadolinium enhancement on cardiovascular magnetic resonance imaging help? Am Heart J. 2020;221:177–9.

    PubMed  Google Scholar 

  17. 17.

    Barison A, Del Torto A, Chiappino S, Aquaro GD, Todiere G, Vergaro G, et al. Prognostic significance of myocardial extracellular volume fraction in nonischaemic dilated cardiomyopathy. J Cardiovasc Med (Hagerstown). 2015;16:681–7.

    Google Scholar 

  18. 18.

    Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging. 2013;6:1056–65.

    PubMed  Google Scholar 

  19. 19.

    Puntmann VO, Carr-White G, Jabbour A, Yu C-Y, Gebker R, Kelle S, et al. T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging. 2016;9:40–50.

    Google Scholar 

  20. 20.

    Hasselberg NE, Edvardsen T, Petri H, Berge KE, Leren TP, Bundgaard H, et al. Risk prediction of ventricular arrhythmias and myocardial function in lamin A/C mutation positive subjects. Europace. 2014;16:563–71.

    PubMed  Google Scholar 

  21. 21.

    Menon SC, Etheridge SP, Liesemer KN, Williams RV, Bardsley T, Heywood MC, et al. Predictive value of myocardial delayed enhancement in Duchenne muscular dystrophy. Pediatr Cardiol. 2014;35:1279–85.

    PubMed  Google Scholar 

  22. 22.

    •• Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C, et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study. J Am Coll Cardiol. 2017;70:1977–87 This study demonstrated the prognostic role of cardiac magnetic resonance in patients with myocarditis and preserved ejection fraction.

    PubMed  Google Scholar 

  23. 23.

    Hulten E, Agarwal V, Cahill M, Cole G, Vita T, Parrish S, et al. Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac Sarcoidosis is associated with adverse cardiovascular prognosis: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2016;9:e005001.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Senra T, Ianni BM, Costa ACP, Mady C, Martinelli-Filho M, Kalil-Filho R, et al. Long-term prognostic value of myocardial fibrosis in patients with Chagas cardiomyopathy. J Am Coll Cardiol. 2018;72:2577–87.

    PubMed  Google Scholar 

  25. 25.

    Arora NP, Mohamad T, Mahajan N, Danrad R, Kottam A, Li T, et al. Cardiac magnetic resonance imaging in peripartum cardiomyopathy. Am J Med Sci. 2014;347:112–7.

    PubMed  Google Scholar 

  26. 26.

    Grigoratos C, Barison A, Ivanov A, Andreini D, Amzulescu M-S, Mazurkiewicz L, et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovasc Imaging. 2019;12:2141–51.

    PubMed  Google Scholar 

  27. 27.

    • Aquaro GD, Pingitore A, Di Bella G, Piaggi P, Gaeta R, Grigoratos C, et al. Prognostic role of cardiac magnetic resonance in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2018;122:1745–53 The first study demonstrating the prognostic role of cardiac magnetic resonance in arrhythmogenic cardiomyopathy.

    PubMed  Google Scholar 

  28. 28.

    Raman SV, Sparks EA, Baker PM, McCarthy B, Wooley CF. Mid-myocardial fibrosis by cardiac magnetic resonance in patients with lamin A/C cardiomyopathy: possible substrate for diastolic dysfunction. J Cardiovasc Magn Reson. 2007;9:907–13.

    PubMed  Google Scholar 

  29. 29.

    Fontana M, Barison A, Botto N, Panchetti L, Ricci G, Milanesi M, et al. CMR-verified interstitial myocardial fibrosis as a marker of subclinical cardiac involvement in LMNA mutation carriers. JACC Cardiovasc Imaging. 2013;6:124–6.

    PubMed  Google Scholar 

  30. 30.

    Finsterer J, Stöllberger C. The heart in human dystrophinopathies. Cardiology. 2003;99:1–19.

    PubMed  Google Scholar 

  31. 31.

    Yilmaz A, Gdynia H-J, Baccouche H, Mahrholdt H, Meinhardt G, Basso C, et al. Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. J Cardiovasc Magn Reson. 2008;10:50.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Florian A, Ludwig A, Rösch S, Yildiz H, Sechtem U, Yilmaz A. Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1004–12.

    PubMed  Google Scholar 

  33. 33.

    Hor KN, Taylor MD, Al-Khalidi HR, Cripe LH, Raman SV, Jefferies JL, et al. Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. J Cardiovasc Magn Reson. 2013;15:107.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Grigoratos C, Di Bella G, Aquaro GD. Diagnostic and prognostic role of cardiac magnetic resonance in acute myocarditis. Heart Fail Rev. 2019;24:81–90.

    CAS  PubMed  Google Scholar 

  35. 35.

    Aquaro GD, Negri F, De Luca A, Todiere G, Bianco F, Barison A, et al. Role of right ventricular involvement in acute myocarditis, assessed by cardiac magnetic resonance. Int J Cardiol. 2018;271:359–65.

    PubMed  Google Scholar 

  36. 36.

    Di Bella G, Imazio M, Bogaert J, Pizzino F, Camastra G, Monti L, et al. Clinical value and prognostic impact of pericardial involvement in acute myocarditis. Circ Cardiovasc Imaging. 2019;12:e008504.

    PubMed  Google Scholar 

  37. 37.

    Aquaro GD, Ghebru Habtemicael Y, Camastra G, Monti L, Dellegrottaglie S, Moro C, et al. Prognostic value of repeating cardiac magnetic resonance in patients with acute myocarditis. J Am Coll Cardiol. 2019;74:2439–48.

    PubMed  Google Scholar 

  38. 38.

    Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Schulz-Menger J, Wassmuth R, Abdel-Aty H, Siegel I, Franke A, Dietz R, et al. Patterns of myocardial inflammation and scarring in sarcoidosis as assessed by cardiovascular magnetic resonance. Heart. 2006;92:399–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Roberts WC, McAllister HA, Ferrans VJ. Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med. 1977;63:86–108.

    CAS  PubMed  Google Scholar 

  41. 41.

    Luetkens JA, Doerner J, Schwarze-Zander C, Wasmuth J-C, Boesecke C, Sprinkart AM, et al. Cardiac magnetic resonance reveals signs of subclinical myocardial inflammation in asymptomatic HIV-infected patients. Circ Cardiovasc Imaging. 2016;9:e004091.

    PubMed  Google Scholar 

  42. 42.

    Tassi EM, Continentino MA, do Nascimento EM, de Pereira BB, Pedrosa RC. Relationship between fibrosis and ventricular arrhythmias in Chagas heart disease without ventricular dysfunction. Arq Bras Cardiol. 2014;102:456–64.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Saadoun D, Asli B, Wechsler B, Houman H, Geri G, Desseaux K, et al. Long-term outcome of arterial lesions in Behçet disease: a series of 101 patients. Medicine (Baltimore). 2012;91:18–24.

    Google Scholar 

  44. 44.

    Guzzo-Merello G, Segovia J, Dominguez F, Cobo-Marcos M, Gomez-Bueno M, Avellana P, et al. Natural history and prognostic factors in alcoholic cardiomyopathy. JACC Heart Fail. 2015;3:78–86.

    PubMed  Google Scholar 

  45. 45.

    Aquaro GD, Gabutti A, Meini M, Prontera C, Pasanisi E, Passino C, et al. Silent myocardial damage in cocaine addicts. Heart. 2011;97:2056–62.

    CAS  PubMed  Google Scholar 

  46. 46.

    Maceira AM, Ripoll C, Cosin-Sales J, Igual B, Gavilan M, Salazar J, et al. Long term effects of cocaine on the heart assessed by cardiovascular magnetic resonance at 3T. J Cardiovasc Magn Reson. 2014;16:26.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Keegan GM, Learmonth ID, Case CP. A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol. 2008;38:645–74.

    CAS  PubMed  Google Scholar 

  48. 48.

    Garner O, Iardino A, Ramirez A, Yakoby M. Cardiomyopathy induced by anabolic-androgenic steroid abuse. BMJ Case Rep 2018;2018.

  49. 49.

    Bogazzi F, Lombardi M, Strata E, Aquaro G, Di Bello V, Cosci C, et al. High prevalence of cardiac hypertophy without detectable signs of fibrosis in patients with untreated active acromegaly: an in vivo study using magnetic resonance imaging. Clin Endocrinol. 2008;68:361–8.

    Google Scholar 

  50. 50.

    Ferreira VM, Marcelino M, Piechnik SK, Marini C, Karamitsos TD, Ntusi NAB, et al. Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction. J Am Coll Cardiol. 2016;67:2364–74.

    CAS  PubMed  Google Scholar 

  51. 51.

    Liang Y-D, Xu Y-W, Li W-H, Wan K, Sun J-Y, Lin J-Y, et al. Left ventricular function recovery in peripartum cardiomyopathy: a cardiovascular magnetic resonance study by myocardial T1 and T2 mapping. J Cardiovasc Magn Reson. 2020;22:2.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Ivanov A, Dabiesingh DS, Bhumireddy GP, Mohamed A, Asfour A, Briggs WM, et al. Prevalence and prognostic significance of left ventricular noncompaction in patients referred for cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10.

  53. 53.

    Cadrin-Tourigny J, Bosman LP, Nozza A, Wang W, Tadros R, Bhonsale A, et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2019;40:1850–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    •• Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95 This multicenter study for the first time demonstrated the prognostic role of late gadolinium enhancement and defined the prognostic cutoff of late gadolinium enhancement extent (> 15% of left ventricular mass) in hypertrophic cardiomyopathy.

    PubMed  Google Scholar 

  55. 55.

    Hen Y, Takara A, Iguchi N, Utanohara Y, Teraoka K, Takada K, et al. High signal intensity on T2-weighted cardiovascular magnetic resonance imaging predicts life-threatening arrhythmic events in hypertrophic cardiomyopathy patients. Circ J. 2018;82:1062–9.

    PubMed  Google Scholar 

  56. 56.

    Todiere G, Nugara C, Gentile G, Negri F, Bianco F, Falletta C, et al. Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score. Am J Cardiol. 2019;124:1286–92.

    CAS  PubMed  Google Scholar 

  57. 57.

    Krämer J, Niemann M, Störk S, Frantz S, Beer M, Ertl G, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol. 2014;114:895–900.

    PubMed  Google Scholar 

  58. 58.

    Mehta N, Chacko P, Jin J, Tran T, Prior TW, He X, et al. Serum versus imaging biomarkers in Friedreich ataxia to indicate left ventricular remodeling and outcomes. Tex Heart Inst J. 2016;43:305–10.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Moon JCC, Fisher NG, McKenna WJ, Pennell DJ. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart. 2004;90:645–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Maron MS, Maron BJ, Harrigan C, Buros J, Gibson CM, Olivotto I, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol. 2009;54:220–8.

    PubMed  Google Scholar 

  61. 61.

    Biagini E, Coccolo F, Ferlito M, Perugini E, Rocchi G, Bacchi-Reggiani L, et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;46:1543–50.

    PubMed  Google Scholar 

  62. 62.

    Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.

    PubMed  Google Scholar 

  63. 63.

    Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212–60.

    CAS  Google Scholar 

  64. 64.

    Olivotto I, Maron MS, Autore C, Lesser JR, Rega L, Casolo G, et al. Assessment and significance of left ventricular mass by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;52:559–66.

    PubMed  Google Scholar 

  65. 65.

    Webb J, Villa A, Bekri I, Shome J, Teall T, Claridge S, et al. Usefulness of cardiac magnetic resonance imaging to measure left ventricular wall thickness for determining risk scores for sudden cardiac death in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2017;119:1450–5.

    PubMed  Google Scholar 

  66. 66.

    Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381:242–55.

    PubMed  Google Scholar 

  67. 67.

    Maron MS, Finley JJ, Bos JM, Hauser TH, Manning WJ, Haas TS, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation. 2008;118:1541–9.

    PubMed  Google Scholar 

  68. 68.

    Ichida M, Nishimura Y, Kario K. Clinical significance of left ventricular apical aneurysms in hypertrophic cardiomyopathy patients: the role of diagnostic electrocardiography. J Cardiol. 2014;64:265–72.

    PubMed  Google Scholar 

  69. 69.

    Rowin EJ, Maron BJ, Haas TS, Garberich RF, Wang W, Link MS, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. J Am Coll Cardiol. 2017;69:761–73.

    PubMed  Google Scholar 

  70. 70.

    Maron MS, Appelbaum E, Harrigan CJ, Buros J, Gibson CM, Hanna C, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1:184–91.

    PubMed  Google Scholar 

  71. 71.

    Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM, et al. Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol. 2008;51:1369–74.

    PubMed  Google Scholar 

  72. 72.

    Todiere G, Aquaro GD, Piaggi P, Formisano F, Barison A, Masci PG, et al. Progression of myocardial fibrosis assessed with cardiac magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2012;60:922–9.

    PubMed  Google Scholar 

  73. 73.

    Aquaro GD, Positano V, Pingitore A, Strata E, Di Bella G, Formisano F, et al. Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2010;12:21.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Aquaro GD, Masci P, Formisano F, Barison A, Strata E, Pingitore A, et al. Usefulness of delayed enhancement by magnetic resonance imaging in hypertrophic cardiomyopathy as a marker of disease and its severity. Am J Cardiol. 2010;105:392–7.

    PubMed  Google Scholar 

  75. 75.

    Todiere G, Pisciella L, Barison A, Del Franco A, Zachara E, Piaggi P, et al. Abnormal T2-STIR magnetic resonance in hypertrophic cardiomyopathy: a marker of advanced disease and electrical myocardial instability. PLoS One. 2014;9:e111366.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Kolman L, Welsh DG, Vigmond E, Joncas SX, Stirrat J, Scholl D, et al. Abnormal lymphatic channels detected by T2-weighted MR imaging as a substrate for ventricular arrhythmia in HCM. JACC Cardiovasc Imaging. 2016;9:1354–6.

    PubMed  Google Scholar 

  77. 77.

    Brouwer WP, Baars EN, Germans T, de Boer K, Beek AM, van der Velden JV, et al. In-vivo T1 cardiovascular magnetic resonance study of diffuse myocardial fibrosis in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2014;16:28.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Zarate YA, Hopkin RJ. Fabry’s disease. Lancet. 2008;372:1427–35.

    CAS  PubMed  Google Scholar 

  79. 79.

    Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry. Genet Med. 2009;11:790–6.

    PubMed  Google Scholar 

  80. 80.

    Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8.

    PubMed  Google Scholar 

  81. 81.

    Gange CA, Link MS, Maron MS. Utility of cardiovascular magnetic resonance in the diagnosis of Anderson-Fabry disease. Circulation. 2009;120:e96–7.

    PubMed  Google Scholar 

  82. 82.

    Biegstraaten M, Arngrímsson R, Barbey F, Boks L, Cecchi F, Deegan PB, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis. 2015;10:36.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Nordin S, Kozor R, Vijapurapu R, Augusto JB, Knott KD, Captur G, et al. Myocardial storage, inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy. Circ Cardiovasc Imaging. 2019;12:e009430.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Kishnani PS, Steiner RD, Bali D, Berger K, Byrne BJ, Case LE, et al. Pompe disease diagnosis and management guideline. Genet Med. 2006;8:267–88.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Bembi B, Cerini E, Danesino C, Donati MA, Gasperini S, Morandi L, et al. Diagnosis of glycogenosis type II. Neurology. 2008;71:S4–11.

    CAS  PubMed  Google Scholar 

  86. 86.

    Fukuda T, Ahearn M, Roberts A, Mattaliano RJ, Zaal K, Ralston E, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol Ther. 2006;14:831–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Barker PCA, Pasquali SK, Darty S, Ing RJ, Li JS, Kim RJ, et al. Use of cardiac magnetic resonance imaging to evaluate cardiac structure, function and fibrosis in children with infantile Pompe disease on enzyme replacement therapy. Mol Genet Metab. 2010;101:332–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Maron BJ. A phenocopy of sarcomeric hypertrophic cardiomyopathy: LAMP2 cardiomyopathy (Danon disease) from China. Eur Heart J. 2012;33:570–2.

    PubMed  Google Scholar 

  89. 89.

    Tada H, Harimura Y, Yamasaki H, Sekiguchi Y, Ishizu T, Seo Y, et al. Utility of real-time 3-dimensional echocardiography and magnetic resonance imaging for evaluation of Danon disease. Circulation. 2010;121:e390–2.

    PubMed  Google Scholar 

  90. 90.

    Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2013;45:4–16.

    CAS  PubMed  Google Scholar 

  91. 91.

    Florian A, Ludwig A, Stubbe-Dräger B, Boentert M, Young P, Waltenberger J, et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. J Cardiovasc Magn Reson. 2015;17:40.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996;335:1169–75.

    PubMed  Google Scholar 

  93. 93.

    Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012;27:1133–7.

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    •• Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132:1570–9 This multicenter study demonstrated the prognostic role of cardiac magnetic resonance in cardiac amyloidosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Raina S, Lensing SY, Nairooz RS, Pothineni NVK, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging. 2016;9:1267–77.

    PubMed  Google Scholar 

  96. 96.

    Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36:244–51.

    PubMed  Google Scholar 

  97. 97.

    Pepe A, Meloni A, Rossi G, Midiri M, Missere M, Valeri G, et al. Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: a prospective multicentre study by a multi-parametric approach. Eur Heart J Cardiovasc Imaging. 2018;19:299–309.

    PubMed  Google Scholar 

  98. 98.

    Meloni A, Restaino G, Borsellino Z, Caruso V, Spasiano A, Zuccarelli A, et al. Different patterns of myocardial iron distribution by whole-heart T2* magnetic resonance as risk markers for heart complications in thalassemia major. Int J Cardiol. 2014;177:1012–9.

    PubMed  Google Scholar 

  99. 99.

    Pennell DJ, Carpenter JP, Roughton M, Cabantchik Z. On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure. J Cardiovasc Magn Reson. 2011;13:45.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Donato Aquaro.

Ethics declarations

Conflict of Interest

Chrysanthos Grigoratos, Giancarlo Todiere, Andrea Barison, and Giovanni Donato Aquaro declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grigoratos, C., Todiere, G., Barison, A. et al. The Role of MRI in Prognostic Stratification of Cardiomyopathies. Curr Cardiol Rep 22, 61 (2020). https://doi.org/10.1007/s11886-020-01311-3

Download citation

Keywords

  • Magnetic resonance imaging
  • Non-ischemic
  • Cardiomyopathies
  • Scar
  • Sudden cardiac death
  • Prognosis