Motion Correction and Its Impact on Absolute Myocardial Blood Flow Measures with PET

  • Marina Piccinelli
  • John R. Votaw
  • Ernest V. Garcia
Nuclear Cardiology (V Dilsizian, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Nuclear Cardiology


Purpose of Review

Motion artifacts, due to cardiac and respiratory cycles, myocardial cardiac creep, or gross patient movements, have been extensively investigated in the context of relative myocardial perfusion imaging with SPECT and PET. These movements have been identified as a major source of errors in image quantification and diagnosis. Recently, as dynamic PET quantification for myocardial blood flow assessment has entered clinical practice, similar questions have arisen on the impact of motion on final blood flow values.

Recent Findings

While preliminary investigations have underlined the potential impact of these motions on MBF quantification, their correction on dynamic acquisition remains challenging and limited to research studies. Gross patient’s body movements occur in a consistent number of cases, particularly during stress acquisition, typically involving a limited number of image frames. If undetected, these movements can lead to great differences in flow values and consequently misdiagnosis. Quality control routines can be applied to automatically inspect the shape of time activity curves and to help identify motion artifacts.


Cyclic cardiac and respiratory motion may have a considerable impact on final flow values. Correction of gross body motion represents a priority in the context of optimizing absolute flow clinical routine utilization and protocol standardization.


Cardiac PET MBF quantification Cardiac and respiratory artifacts Body motion artifacts 


Compliance with Ethical Standards

Conflict of Interest

Marina Piccinelli declares that she has no conflict of interest.

John R. Votaw reports personal fees from Syntermed Inc.

Ernest V. Garcia reports other from Syntermed Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative assessment of myocardial blood flow—clinical and research applications. Semin Nucl Med. 2014;44:274–93.CrossRefPubMedGoogle Scholar
  2. 2.
    Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli M, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circ. 2011;124:2215–24.CrossRefGoogle Scholar
  3. 3.
    Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurements. J Nucl Med. 2009;50:1076–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Slomka PJ, Alexanderson E, Jacome R, Jimenez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53:171–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Klein R, Renaud JM, Zaidi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol. 2010;17(4):600–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: a technical perspective. J Nucl Cardiol. 2015;22:935–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Presotto L, Gianolli L, Gilardi MC, Bettinardi V. Evaluation of image reconstruction algorithms encompassing time-of-flight and point spread function modelling for quantitative cardiac PET: phantom studies. J Nucl Cardiol. 2015;22:351–63.CrossRefPubMedGoogle Scholar
  8. 8.
    • Rubeaux M, Doris MK, Alessio A, Slomka PJ. Enhancing cardiac PET by motion correction techniques. Curr Cardiol Rep. 2017;19:14. Review paper on the impact of motion artifacts on cardiac PET and potential solutions. CrossRefPubMedGoogle Scholar
  9. 9.
    Ter-Pogossian MM, Bergmann SR, Sobel BE. Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: implications for quantitative nuclear cardiology. J Comput Assist Tomogr. 1982;6:1148–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Rogers W, Shapiro EP, Weiss JL, Buchalter MB, Rademakers FE, Weisfeldt ML, et al. Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circ. 1991;84:721–31.CrossRefGoogle Scholar
  11. 11.
    Wang Y, Vidan E, Bergman GW. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999;213:751–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Shechter G, Resar JR, McVeigh ER. Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans Med Imaging. 2006;25:369–75.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Martinez-Möller A, Zikic D, Botnar R, Bundschuh R, Howe W, Ziegler S, et al. Dual cardiac–respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging. 2007;34:1447–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Lamare F, Le Maitre A, Dawood M, Schäfers KP, Fernandez P, Rimoldi OE, et al. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging. Med Phys. 2014;41(7):072504. Scholar
  15. 15.
    Dawood M, Buther F, Lang N, Schober O, Schäfers KP. Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes. Med Phys. 2007;34:3067–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Koshino K, Watabe H, Hasegawa S, Hayashi T, Hatazawa J, Iida H. Development of motion correction technique for cardiac 15O-water PET study using an optical motion tracking system. Ann Nucl Med. 2010;24:1–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Koivumaki T, Nekolla SG, Furst S, Loher S, Vauhkonen M, Schwaiger M, et al. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET. Phys Med Biol. 2014;59:6373–85.CrossRefPubMedGoogle Scholar
  18. 18.
    Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode–driven cardiac and respiratory gating in pet. J Nucl Med. 2009;50:674–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Nye JA, Esteves F, Votaw JR. Minimizing artifacts resulting from respiratory and cardiac motion by optimization of the transmission scan in cardiac PET/CT. Med Phys. 2007;34:1901–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Nye JA, Hamill J, Tudorasco D, Carew J, Esteves F, Votaw JR. Comparison of low-pitch and respiratory-averaged CT protocols for attenuation correction of cardiac PET studies. Med Phys. 2009;36:1618–23.CrossRefPubMedGoogle Scholar
  21. 21.
    Gould KL, Panu T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors cardiac PET/CT due to misregistrations of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48:1112–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Rajaram M, Tahari AK, Lee AH, Lodge MA, Tsui B, Nekolla S, et al. Cardiac PET/CT misregistration causes significant changes in estimated myocardial blood flow. J Nucl Med. 2013;54:50–4.Google Scholar
  23. 23.
    Pourmoghaddas A, Klein R, deKemp RA, Wells RG. Respiratory phase alignment improves blood-flow quantification in Rb82 PET myocardial perfusion imaging. Med Phys. 2013;40:022503. Scholar
  24. 24.
    Segars WP, Tsui BMW. Study of the efficacy of respiratory gating in myocardial SPECT using 4D NCAT phantom. IEEE Trans Nucl Sci. 2002;49:675–9.CrossRefGoogle Scholar
  25. 25.
    Dawood M, Buther F, Jiang X, Schafers KP. Respiratory motion correction in 3D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging. 2008;27:1164–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Dawood M, Lang N, Jiang X, Schafers KP. Lung motion correction on respiratory gated 3D PET/CT images. IEEE Trans Med Imaging. 2006;25:476–85.CrossRefPubMedGoogle Scholar
  27. 27.
    Klein GJ, Reutter BW, Huesman RH. Non-rigid summing of gated PET via optical flow. IEEE Trans Nucl Sci. 1997;44:1509–12.CrossRefGoogle Scholar
  28. 28.
    Gillard DR, Mair BA, Parker JG. Motion estimation for cardiac emission tomography by optical flow methods. Phys Med Biol. 2008;53:2991–3006.CrossRefGoogle Scholar
  29. 29.
    Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med. 2004;45:1128–34.PubMedGoogle Scholar
  30. 30.
    Liu C, Alessio AM, Kinahan PE. Respiratory motion correction for quantitative PET/CT using all detected events with internal-external motion correlation. Med Phys. 2011;38:2715–23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yu Y, Chan C, Ma T, Liu Y, Gallezot JD, Naganawa M, et al. Event-by-event continuous respiratory motion correction for dynamic PET imaging. J Nucl Med. 2016;57:1084–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Mukherjee JM, Johnson KL, McNamara JE, King MA. Quantitative study of rigid body and respiratory motion of patient undergoing stress and rest cardiac SPECT imaging. IEEE Trans Nucl Sci. 2010;57:1105–15.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wheat JM, Curie GM. Incidence and characterization of patient motion in myocardial perfusion SPECT. J Nucl Med Technol. 2004;32:60–5.PubMedGoogle Scholar
  34. 34.
    Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med. 2001;42:687–94.PubMedGoogle Scholar
  35. 35.
    Klein R, Hunter C, Beanlands R, deKemp RA. Prevalence of patient motion in dynamic PET. J Nucl Med. 2011;52(supplement 1):2015.Google Scholar
  36. 36.
    •• Hunter CRRN, Klein R, Beanlands RS, de Kemp RA. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging. Med Phys. 2016;43:1829–39. Study on the assessment of motion on MBF values conducted with computer simulations and in a patients’ cohort. CrossRefPubMedGoogle Scholar
  37. 37.
    Koshino K, Watabe H, Emni J, Hirano Y, Zeniya T, Hasegawa S, et al. Effect of patient movements on measurements of myocardial blood flow and viability in resting 15O-water PET studies. J Nucl Cardiol. 2012;19:524–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996;1:35–51.CrossRefPubMedGoogle Scholar
  39. 39.
    Naum A, Laaksonen MS, Tuunanen H, Oikonen V, Teras M, Kemppainen J, et al. Motion detection and correction for dynamic 15O-water myocardial perfusion PET studies. Eur J Nucl Med Mol Imaging. 2005;32:1378–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. Upward creep of the heart: a frequent source of false-positive reversible defects during Thallium-201 stress-redistribution SPECT. J Nucl Med. 1989;30:1718–22.PubMedGoogle Scholar
  41. 41.
    Kangasmaa TS, Sohlberg AO. Optimization of reconstruction—reprojection-based motion correction for cardiac SPECT. Ann Nucl Med. 2014;28:580–5.CrossRefPubMedGoogle Scholar
  42. 42.
    Woo J, Tamarappoo B, Dey D, Nakazato R, Le Meunier L, Ramesh A, et al. Automatic 3D registration of dynamic stress and rest 82Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction. Med Phys. 2011;38:6313–26.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Votaw JR, Packard RRS. Technical aspects of acquiring and measuring myocardial blood flow: methods, techniques, and QA. J Nucl Cardiol. 2017;

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marina Piccinelli
    • 1
  • John R. Votaw
    • 1
    • 2
  • Ernest V. Garcia
    • 1
  1. 1.Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaUSA
  2. 2.AlpharettaUSA

Personalised recommendations