Skip to main content

Advertisement

Log in

Imaging of Left Ventricular Hypertrophy: a Practical Utility for Differential Diagnosis and Assessment of Disease Severity

  • Myocardial Disease (A Abbate, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Left ventricular hypertrophy (LVH) is often encountered in clinical practice, and it is a risk factor for cardiac mortality and morbidity. Determination of the etiology and disease severity is important for the management of patients with LVH. The aim of this review is to show the remarkable progress in cardiac imaging and its importance in clinical practice.

Recent Findings

This review focuses on clinical features and characteristic cardiac imaging in LVH caused by various diseases including hypertension, aortic valve stenosis, hypertrophic cardiomyopathy, and secondary cardiomyopathies. The usefulness of echocardiography as a tool of general versatility including hemodynamic evaluation and the usefulness of cardiac magnetic resonance imaging for assessment of cardiac morphology and myocardial tissue characteristics of relevance for LVH are described.

Summary

Imaging modalities now have central roles in the differentiation and prognostic assessment of LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Levy D, Garrison RJ, Savage DD, et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kannel WB, Dannenberg AL, Levy D. Population implications of electrocardiographic left ventricular hypertrophy. Am J Cardiol. 1987;60:851–931.

    Article  Google Scholar 

  3. Artham SM, Lavie CJ, Milani RV, Patel DA, Verma A, Ventura HO. Clinical impact of left ventricular hypertrophy and implications for regression. Prog Cardiovasc Dis. 2009;52:153–67.

    Article  PubMed  Google Scholar 

  4. Desai CS, Ning H, Lloyd-Jones DM. Competing cardiovascular outcomes associated with electrocardiographic left ventricular hypertrophy: the atherosclerosis risk in communities study. Heart. 2012;98:330–4.

    Article  PubMed  Google Scholar 

  5. Koren MJ, Devereux RB, Casale PN, et al. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114:345–52.

    Article  CAS  PubMed  Google Scholar 

  6. Casale PN, Devereux RB, Milner M, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105:173–8.

    Article  CAS  PubMed  Google Scholar 

  7. Verdecchia P, Carini G, Circo A, et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol. 2001;38:1829–35.

    Article  CAS  PubMed  Google Scholar 

  8. Verdecchia P, Porcellati C, Reboldi G, et al. Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation. 2001;104:2039–44.

    Article  CAS  PubMed  Google Scholar 

  9. Milani RV, Lavie CJ, Mehra MR, Ventura HO, Kurtz JD, Messerli FH. Left ventricular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol. 2006;97:959–63.

    Article  PubMed  Google Scholar 

  10. Lavie CJ, Patel DA, Milani RV, Ventura HO, Shah S, Gilliland Y. Impact of echocardiographic left ventricular geometry on clinical prognosis. Prog Cardiovasc Dis. 2014;57:3–9.

    Article  PubMed  Google Scholar 

  11. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;63:e57–185.

    Article  PubMed  Google Scholar 

  12. Holmes DR Jr, Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;59:1200–54.

    Article  PubMed  Google Scholar 

  13. Bloomfield GS, Gillam LD, Hahn RT, et al. A practical guide to multimodality imaging of transcatheter aortic valve replacement. JACC Cardiovasc Imaging. 2012;5:441–55.

    Article  PubMed  Google Scholar 

  14. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr. 2012;6:366–80.

    Article  PubMed  Google Scholar 

  15. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:e212–60.

    Article  CAS  PubMed  Google Scholar 

  16. •• Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79. This guideline provides new sudden cardiac death risk prediction model in hypertrophic cardiomyopathy.

    Article  PubMed  Google Scholar 

  17. JCS Joint Working Group. Guidelines for diagnosis and treatment of patients with hypertrophic cardiomyopathy (JCS 2012)— digest version. Circ J. 2016;80:753–74.

    Article  Google Scholar 

  18. Maron BJ, Olivotto I, Spirito P, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 2000;102:858–64.

    Article  CAS  PubMed  Google Scholar 

  19. Kubo T, Kitaoka H, Okawa M, et al. Clinical impact of atrial fibrillation in patients with hypertrophic cardiomyopathy. Results from Kochi RYOMA Study. Circ J. 2009;73:1599–605.

    Article  PubMed  Google Scholar 

  20. Maron BJ, Maron MS. The remarkable 50 years of imaging in HCM and how it has changed diagnosis and management: from M-mode echocardiography to CMR. JACC Cardiovasc Imaging. 2016;9:858–72.

    Article  PubMed  Google Scholar 

  21. Maron BJ. Asymmetry in hypertrophic cardiomyopathy: the septal to free wall thickness ration revisited. Am J Cardiol. 1985;55:835–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kubo T, Kitaoka H, Okawa M, et al. Clinical profiles of hypertrophic cardiomyopathy with apical phenotype—comparison of pure-apical form and distal-dominant form. Circ J. 2009;73:2330–6.

    Article  PubMed  Google Scholar 

  23. • Ro R, Halpern D, Sahn DJ, et al. Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic left ventricular flow and the mitral valve. J Am Coll Cardiol. 2014;64:1984–95. This study provides the hydrodynamic cause of systolic anterior motion of the mitral valve in hypertrophic obstructive cardiomyopathy.

    Article  PubMed  Google Scholar 

  24. Bogaert J, Olivotto I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside. Radiology. 2014;273:329–48.

    Article  PubMed  Google Scholar 

  25. Teraoka K, Hirano M, Ookubo H, et al. Delayed contrast enhancement of MRI in hypertrophic cardiomyopathy. Magn Reson Imaging. 2004;22:155–61.

    Article  PubMed  Google Scholar 

  26. Maron MS, Appelbaum E, Harrigan CJ, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1:184–91.

    Article  PubMed  Google Scholar 

  27. •• Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95. This study provides extensive late gadolinium enhancement measured by quantitative enhanced cardiac magnetic resonance provides additional information for assessing sudden cardiac death event risk among patients with hypertrophic cardiomyopathy

    Article  PubMed  Google Scholar 

  28. McKenna WJ, Nagueh SF. Cardiac magnetic resonance imaging and sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:455–7.

    Article  PubMed  Google Scholar 

  29. Ismail TF, Jabbour A, Gulati A, et al. Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart. 2014;100:1851–8.

    Article  PubMed  Google Scholar 

  30. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med. 1997;337:898–909.

    Article  CAS  PubMed  Google Scholar 

  31. Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 nomenclature guidelines. Amyloid. 2016;23:209–13.

    Article  CAS  PubMed  Google Scholar 

  32. Dubrey SW, Hawkins PN, Falk RH. Amyloid diseases of the heart: assessment, diagnosis, and referral. Heart. 2011;97:75–84.

    Article  CAS  PubMed  Google Scholar 

  33. Chew C, Ziady GM, Raphael MJ, Oakley CM. The functional defect in amyloid heart disease: the “stiff heart” syndrome. Am J Cardiol. 1975;36:438–44.

    Article  CAS  PubMed  Google Scholar 

  34. Falk RH. Diagnosis and management of the cardiac amyloidosis. Circulation. 2005;112:2047–60.

    Article  PubMed  Google Scholar 

  35. Selvanayagam JB, Hawkins PN, Paul B, Myerson SG, Neubauer S. Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol. 2007;69:425–7.

    Google Scholar 

  36. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26:1461–74.

    Article  PubMed  Google Scholar 

  37. Austin BA, Tang WH, Rodriguez ER, et al. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2:1369–77.

    Article  PubMed  Google Scholar 

  38. Syed IS, Glockner JF, Feng D, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155–64.

    Article  PubMed  Google Scholar 

  39. Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132:1570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raina S, Lensing SY, Nairooz RS, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging. 2016;9:1267–77.

    Article  PubMed  Google Scholar 

  41. Banypersad SM, Sado DN, Flett AS, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2013;6:34–9.

    Article  PubMed  Google Scholar 

  42. Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7:157–65.

    Article  PubMed  Google Scholar 

  43. Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. 2013;6:488–97.

    Article  PubMed  Google Scholar 

  44. Banypersad SM, Fontana M, Maestrini V, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36:244–51.

    Article  PubMed  Google Scholar 

  45. Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46:1076–84.

    Article  PubMed  Google Scholar 

  46. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6:195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133:2404–12.

    Article  CAS  PubMed  Google Scholar 

  48. •• González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36:2585–94. This study provides wild-type transthyretin amyloidosis is an underdiagnosed disease that accounts for a significant number of patients with heart failure with preserved ejection fraction.

    Article  PubMed  Google Scholar 

  49. Klopstock T, Jaksch M, Gasser T. Age and cause of death in mitochondrial diseases. Neurology. 1999;53:855–7.

    Article  CAS  PubMed  Google Scholar 

  50. Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med. 2013;45:4–16.

    Article  CAS  PubMed  Google Scholar 

  51. Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J. 2003;24:280–8.

    Article  CAS  PubMed  Google Scholar 

  52. Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12:114–21.

    Article  CAS  PubMed  Google Scholar 

  53. Bates MG, Bourke JP, Giordano C, d’Amati G, Turnbull DM, Taylor RW. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J. 2012;33:3023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yilmaz A, Gdynia HJ, Ponfick M, et al. Cardiovascular magnetic resonance imaging (CMR) reveals characteristic pattern of myocardial damage in patients with mitochondrial myopathy. Clin Res Cardiol. 2012;101:255–61.

    Article  PubMed  Google Scholar 

  55. Florian A, Ludwig A, Stubbe-Dräger B, et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. J Cardiovasc Magn Reson. 2015;17:40. doi:10.1186/s12968-015-0145-x.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Desnick RJ, Brady R, Barranger J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med. 2003;138:338–46.

    Article  PubMed  Google Scholar 

  57. Kampmann C, Baehner F, Whybra C, et al. Cardiac manifestations of Anderson-Fabry disease in heterozygous females. J Am Coll Cardiol. 2002;40:1668–74.

    Article  PubMed  Google Scholar 

  58. Nakao S, Takenaka T, Maeda M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333:288–93.

    Article  CAS  PubMed  Google Scholar 

  59. Eng CM, Guffon N, Wilcox WR, et al. Safety and efficacy of recombinant human alpha-galactosidase A: replacement therapy in Fabry’s disease. N Engl J Med. 2001;345:9–16.

    Article  CAS  PubMed  Google Scholar 

  60. Wu JC, Ho CY, Skali H, et al. Cardiovascular manifestations of Fabry disease: relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity. Eur Heart J. 2010;31:1088–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takenaka T, Teraguchi H, Yoshida A, et al. Terminal stage cardiac findings in patients with cardiac Fabry disease: an electrocardiographic, echocardiographic, and autopsy study. J Cardiol. 2008;51:50–9.

    Article  PubMed  Google Scholar 

  62. Yousef Z, Elliott PM, Cecchi F, et al. Left ventricular hypertrophy in Fabry disease: a practical approach to diagnosis. Eur Heart J. 2013;34:802–8.

    Article  PubMed  Google Scholar 

  63. Deva DP, Hanneman K, Li Q, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease. J Cardiovasc Magn Reson. 2016;18:14. doi:10.1186/s12968-016-0233-6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8.

    Article  PubMed  Google Scholar 

  65. • Pica S, Sado DM, Maestrini V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;16:99. doi:10.1186/s12968-014-0099-4. This study provides native myocardial T1 mapping in Fabry disease is a reproducible technique and T1 reduction is detecting early cardiac disease.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bembi B, Cerini E, Danesino C, et al. Diagnosis of glycogenosis type II. Neurology. 2008;71:S4–11.

    Article  CAS  PubMed  Google Scholar 

  67. Kishnani PS, Hwu WL, Mandel H, et al. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006;148:671–6.

    Article  PubMed  Google Scholar 

  68. Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68:99–109.

    Article  CAS  PubMed  Google Scholar 

  69. Hagemans ML, Winkel LP, Hop WC, Reuser AJ, Van Doorn PA, Van der Ploeg AT. Disease severity in children and adults with Pompe disease related to age and disease duration. Neurology. 2005;64:2139–41.

    Article  CAS  PubMed  Google Scholar 

  70. Hagemans ML, Winkel LP, Van Doorn PA, et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain. 2005;128:671–7.

    Article  CAS  PubMed  Google Scholar 

  71. Morris DA, Blaschke D, Krebs A, et al. Structural and functional cardiac analyses using modern and sensitive myocardial techniques in adult Pompe disease. Int J Cardiovasc Imaging. 2015;31:947–56.

    Article  PubMed  Google Scholar 

  72. Boentert M, Florian A, Dräger B, Young P, Yilmaz A. Pattern and prognostic value of cardiac involvement in patients with late-onset Pompe disease: a comprehensive cardiovascular magnetic resonance approach. J Cardiovasc Magn Reson. 2016;18:91.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Boucek D, Jirikowic J, Taylor M. Natural history of Danon disease. Genet Med. 2011;13:563–8.

    Article  PubMed  Google Scholar 

  74. Endo Y, Furuta A, NIshino I. Danon disease: a phenotypic expression of LAMP-2 deficiency. Acta Neuropathol. 2015;129:391–8.

    Article  CAS  PubMed  Google Scholar 

  75. Maron BJ, Roberts WC, Arad M, et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA. 2009;301:1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dara BS, Rusconi PG, Fishman JE. Danon disease: characteristic late gadolinium enhancement pattern on cardiac magnetic resonance imaging. Cardiol Young. 2011;21:707–9.

    Article  PubMed  Google Scholar 

  77. Nucifora G, Miani D, Piccoli G, Proclemer A. Cardiac magnetic resonance imaging in Danon disease. Cardiology. 2012;121:27–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kitaoka.

Ethics declarations

Conflict of Interest

Toru Kubo and Hiroaki Kitaoka declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubo, T., Kitaoka, H. Imaging of Left Ventricular Hypertrophy: a Practical Utility for Differential Diagnosis and Assessment of Disease Severity. Curr Cardiol Rep 19, 65 (2017). https://doi.org/10.1007/s11886-017-0875-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0875-5

Keywords

Navigation