Skip to main content

Advertisement

Log in

Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide a broad overview of current trends in stem cell research and its applications in cardiovascular medicine. Researches on different stem cell sources, their inherent characteristics, and the limitations they have in medical applications are discussed. Additionally, uses of stem cells for both modeling and treating cardiovascular disease are discussed, taking note of the obstacles these engineered interventions must overcome to be clinically viable.

Recent Findings

Tissue engineering aims to replace dysfunctional tissues with engineered constructs. Stem cell technologies have been a great enabling factor in working toward this goal.

Summary

Many tissue-engineered products are in development that utilize stem cell technology. Although promising, some refinement must be made to these constructs with respect to safety and functionality. A deeper understanding of basic differentiation and tissue developmental mechanisms is required to allow these engineered tissues to be translated into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. A report from the American Heart Association. Circulation. 2016;133:38–48.

    Article  Google Scholar 

  2. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.

    Article  PubMed  Google Scholar 

  3. Chen Q, Ding D, Zhang Y, Yang Y, Li Q, Chen X, et al. Prediction of the risk of mortality using risk score in patients with coronary heart disease. Oncotarget [Internet]. 2016 Nov 7; Available from: http://www.ncbi.nlm.nih.gov/pubmed/27835576.

  4. Veronesi G, Tunstall-Pedoe H, Ferrario MM, Kee F, Kuulasmaa K, Chambless LE, et al. Combined effect of educational status and cardiovascular risk factors on the incidence of coronary heart disease and stroke in European cohorts: implications for prevention. Eur J Prev Cardiol [Internet]. 2016 Nov 11;2047487313505821. Available from: http://cpr.sagepub.com/content/early/2013/09/17/2047487313505821.abstract.

  5. Thomson J, Itskovitz-Eldor J, Shapiro S, Waknitz M, Swiergiel J, Marshall V, et al. Embryonic stem cell lines derived from human blastocysts. Science [Internet]. 1998;282(5391):1145–7. doi:10.1126/science.282.5391.1145%5Cnhttp://dx.doi.org/10.1126/science.282.5391.1145.

    CAS  Google Scholar 

  6. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6(2):88–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu CC, Ma DL, Yan T-D, Fan X, Poon Z, Poon L-F, et al. Distinct responses of stem cells to telomere uncapping—a potential strategy to improve the safety of cell therapy. Stem Cells [Internet]. 2016;34(10):2471–84. doi:10.1002/stem.2431.

    Article  CAS  Google Scholar 

  8. Mclaren A. Ethical and social considerations of stem cell research. Nature [Internet]. 2001;414(6859):129–31. doi:10.1038/35102194%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/11689959.

    Article  CAS  Google Scholar 

  9. Bobrow JC. The ethics and politics of stem cell research. Trans Am Ophthalmol Soc [Internet]. 2005;103:138–41-2. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1447568&tool=pmcentrez&rendertype=abstract.

    Google Scholar 

  10. Lyerly AD, Faden RR. Willingness to donate frozen embryos for stem cell research. Science (80-). 2007;317:46–7.

    Article  Google Scholar 

  11. Zhu H, Behr B, Reddy VV, Hughes M, Pan Y, Baker J. Human embryonic stem cell lines with lesions in FOXP3 and NF1. 2016. p. 1–13.

    Google Scholar 

  12. Sjogren A, Hardarson T, Andersson K, Caisander G, Lundquist M, Wikland M, et al. Human blastocysts for the development of embryonic stem cells. Reprod Biomed Online. 2004;9(3):326–9.

    Article  PubMed  Google Scholar 

  13. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ménézo Y, Veiga A, Benkhalifa M. Improved methods for blastocyst formation and culture. Hum Reprod [Internet]. 1998;13 Suppl 4:256–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10091076.

    Article  Google Scholar 

  15. Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril. 1999;71(5):836–42.

    Article  CAS  PubMed  Google Scholar 

  16. Raya A, Rodríguez-Pizà I, Arán B, Consiglio A, Barri PN, Veiga A, et al. Generation of cardiomyocytes from new human embryonic stem cell lines derived from poor-quality blastocysts. Cold Spring Harb Symp Quant Biol. 2008;73:127–35.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Stojkovic P, Przyborski S, Cooke M, Armstrong L, Lako M, et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells. 2006;24(September):2669–76.

    Article  CAS  PubMed  Google Scholar 

  18. Mitalipova M, Calhoun J, Shin S, Wininger D, Schulz T, Noggle S, et al. Human embryonic stem cell lines derived from discarded embryos. Stem Cells. 2003;21:521–6.

    Article  CAS  PubMed  Google Scholar 

  19. Stojkovic M, Lako M, Stojkovic P, Stewart R, Przyborski S, Armstrong L, et al. Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells [Internet]. 2004;22(5):790–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15342943.

    Article  Google Scholar 

  20. Oh SK, Kim HS, Ahn HJ, Seol HW, Kim YY, Park YB, et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells [Internet]. 2005;23(2):211–9. Available from: http://doi.wiley.com/10.1634/stemcells.2004-0122%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/15671144.

  21. Später D, Hansson EM, Zangi L, Chien KR. How to make a cardiomyocyte. Development [Internet]. 2014;141(23):4418–31. Available from: http://dev.biologists.org/content/141/23/4418.abstract.

    Article  Google Scholar 

  22. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci [Internet]. 2012;109(27):E1848–57. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1200250109.

    Article  CAS  Google Scholar 

  23. •• Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc [Internet]. 2013;8:162–75. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3612968&tool=pmcentrez&rendertype=abstract. This paper describes a protocol for the modulation of a key pathway in cardiac differentiation to efficiently derive cardiomyocytes from iPSC and ESCs that is now widely used.

  24. Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, et al. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol [Internet] Elsevier Ltd. 2011;51(3):280–7. doi:10.1016/j.yjmcc.2011.04.012.

    Article  CAS  Google Scholar 

  25. Stevens KR, Pabon L, Muskheli V, Murry CE. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A [Internet]. 2009;15(6):1211–22. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2774496&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  26. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marbán E, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005;111(1):11–20.

    Article  PubMed  Google Scholar 

  27. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol [Internet]. 2004;22(10):1282–9. Available from: http://dx.doi.org/10.1038/nbt1014.

    Article  CAS  Google Scholar 

  28. Ma J, Both SK, Yang F, Cui FZ, Pan J, Meijer GJ, et al. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med. 2014;3(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  29. Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther [Internet]. 2016;7(1):131. doi:10.1186/s13287-016-0394-0.

    Article  Google Scholar 

  30. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154(4):827–42.

    Article  CAS  PubMed  Google Scholar 

  31. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res [Internet]. 1999;85(3):221–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10436164.

    Article  CAS  Google Scholar 

  32. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest [Internet]. 2001;107(11):1355–6. Available from: http://www.jci.org/articles/view/12150.

    Article  Google Scholar 

  33. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transpl [Internet]. 2003;7 Suppl 3:86–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12603699.

    Article  Google Scholar 

  34. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature [Internet]. 2004;428(6983):664–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3736322&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  35. Rüger BM, Breuss J, Hollemann D, Yanagida G, Fischer MB, Mosberger I, et al. Vascular morphogenesis by adult bone marrow progenitor cells in three-dimensional fibrin matrices. Differentiation. 2008;76(7):772–83.

    Article  PubMed  Google Scholar 

  36. Jia X, Pan J, Li X, Li N, Han Y, Feng X, et al. Bone marrow mesenchymal stromal cells ameliorate angiogenesis and renal damage via promoting PI3k-Akt signaling pathway activation in vivo. Cytotherapy [Internet]. 2016;18(7):838–45. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1465324916303425.

    Article  CAS  Google Scholar 

  37. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. [Internet]. 2003;112(1):42–9. Available from: http://www.jci.org/cgi/content/abstract/112/1/42.

  38. Siciliano C, Chimenti I, Bordin A, Ponti D, Iudicone P, Peruzzi M, et al. The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells. Biomed Res Int. 2015;2015:Article ID 162439.

  39. Bayes-Genis A, Soler-Botija C, Farré J, Sepúlveda P, Raya A, Roura S, et al. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. J Mol Cell Cardiol [Internet] Elsevier Ltd. 2010;49(5):771–80. doi:10.1016/j.yjmcc.2010.08.010.

    Article  CAS  Google Scholar 

  40. Pittenger MF, Mackay AM, Beck S, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science (80-). 1999;284(April):143–7.

    Article  CAS  Google Scholar 

  41. Ahima RS, Flier JS, Flier JS, Spiegelman BM, Mohamed-Ali V, et al. Adipose tissue as an endocrine organ. Trends Endocrinol Metab [Internet]. 2000;11(8):327–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10996528.

    Article  CAS  Google Scholar 

  42. Krawiec JT, Weinbaum JS, Liao H-T, Ramaswamy AK, Pezzone DJ, Josowitz AD, et al. In vivo functional evaluation of tissue-engineered vascular grafts fabricated using human adipose-derived stem cells from high cardiovascular risk populations. Tissue Eng Part A. 2016;22(9–10):765–75.

    Article  CAS  PubMed  Google Scholar 

  43. •• Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell [Internet]. 2007;131(5):861–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867407014717. This is the first development of human induced pluripotent stem cells from adult fibroblasts and has established the foundation for human disease modeling and cell-based therapies.

  44. Liu X, Huang J, Chen T, Wang Y, Xin S, Li J, et al. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res. 2008;18(12):1177–89.

    Article  CAS  PubMed  Google Scholar 

  45. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol [Internet]. 2008;26(1):101–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18059259.

    Article  CAS  Google Scholar 

  46. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26(11):1269–75.

    Article  CAS  PubMed  Google Scholar 

  47. Feng B, Jiang J, Kraus P, Ng J-HH, Heng J-CDC, Chan Y-SS, et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol [Internet]. 2009;11 VN-r(2):197–203. Available from: http://dx.doi.org/10.1038/ncb1827.

    Article  Google Scholar 

  48. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A [Internet]. 2009;106(37):15720–5. Available from: http://www.pnas.org/content/106/37/15720.full.

    Article  CAS  Google Scholar 

  49. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell [Internet] Elsevier Inc. 2009;4(6):472–6. Available from: http://dx.doi.org/10.1016/j.stem.2009.05.005.

    Article  CAS  Google Scholar 

  50. Tian E, Sun G, Sun G, Chao J, Ye P, Warden C, et al. Small-molecule-based lineage reprogramming creates functional astrocytes. Cell Rep [Internet] Elsevier Company. 2016;16(3):781. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124716307963%5Cn http://www.ncbi.nlm.nih.gov/pubmed/27396343.

    CAS  Google Scholar 

  51. Kehler J, Greco M, Martino V, Pachiappan M, Yokoe H, Chen A, et al. RNA-generated and gene-edited induced pluripotent stem cells for disease modeling and therapy. J Cell Physiol [Internet]. 2016. doi:10.1002/jcp.25597.

    Google Scholar 

  52. Itoh M, Kawagoe S, Tamai K, Okano HJ, Nakagawa H. Integration-free T cell-derived human induced pluripotent stem cells (iPSCs) from a patient with recessive dystrophic epidermolysis bullosa (RDEB) carrying two compound heterozygous mutations in the COL7A1 gene. Stem Cell Res [Internet] The Authors. 2016;17(1):32–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1873506116300344.

    Article  CAS  Google Scholar 

  53. Itoh M, Kawagoe S, Okano HJ, Nakagawa H. Integration-free T cell-derived human induced pluripotent stem cells (iPSCs) from a healthy individual: WT-iPSC1. Stem Cell Res [Internet] The Authors. 2016;17(1):22–4. doi:10.1016/j.scr.2016.05.001.

    Article  CAS  Google Scholar 

  54. Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, Dong W, et al. Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports [Internet] The Authors. 2014;3(5):804–16. doi:10.1016/j.stemcr.2014.09.005.

    Article  CAS  Google Scholar 

  55. Bai H, Gao Y, Arzigian M, Wojchowski DM, Wu WS, Wang ZZ. BMP4 regulates vascular progenitor development in human embryonic stem cells through a Smad-dependent pathway. J Cell Biochem. 2010;109(2):363–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kehat I, Kenyagin-Karsenti D. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest [Internet]. 2001;108(3):363–4. Available from: http://www.jci.org/cgi/content/abstract/108/3/407.

    Article  Google Scholar 

  57. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell [Internet] Elsevier Inc. 2011;8(2):228–40. doi:10.1016/j.stem.2010.12.008.

    Article  CAS  Google Scholar 

  58. • Sivarapatna A, Ghaedi M, Le AV, Mendez JJ, Qyang Y, Niklason LE. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials [Internet] Elsevier Ltd. 2015;53:621–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142961215002598. This paper shows how physical cues such as flow rate are capable of maturing stem cell derived endothelial cells into specified subtypes for the generation of functional tissues.

  59. Baeyens N, Schwartz MA. Biomechanics of vascular mechanosensation and remodeling. Mol Biol Cell [Internet]. 2016;27(1):7–11. Available from: http://www.molbiolcell.org/content/27/1/7.abstract%5Cn http://www.molbiolcell.org/content/27/1/7.full.pdf.

    Article  CAS  Google Scholar 

  60. Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-notch signaling pathways. Arterioscler Thromb Vasc Biol. 2009;29(12):2125–31.

    Article  CAS  PubMed  Google Scholar 

  61. Carvajal-Vergara X, Sevilla A, Souza SLD, Ang Y, Schaniel C, Lee D, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature [Internet] Nature Publishing Group. 2010;465(7299):808–12. Available from: http://dx.doi.org/10.1038/nature09005.

    CAS  Google Scholar 

  62. Han L, Li Y, Tchao J, Kaplan AD, Lin B, Li Y, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104(2):258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. •• Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell [Internet] Elsevier Inc. 2013;12(1):101–13. Available from: http://dx.doi.org/10.1016/j.stem.2012.10.010. This is the first paper describing familiar hypertrophic cardiomyopathy with myosin muation using patient induced pluripotent stem cell approach.

  64. Lompre AM, Mercadier JJ, Wisnewsky C, Bouveret P, Pantaloni C, D’Albis A, et al. Species- and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Dev Biol [Internet]. 1981;84(2):286–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20737866.

    Article  CAS  Google Scholar 

  65. Lowey S, Lesko LM, Rovner AS, Hodges AR, White SL, Low RB, et al. Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. J Biol Chem. 2008;283(29):20579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, et al. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation. 2012;126(14):1695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Misra A, Sheikh AQ, Kumar A, Luo J, Zhang J, Hinton RB, et al. Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. J Exp Med [Internet]. 2016;213(3):451–63. Available from: http://jem.rupress.org/content/213/3/451?etoc.

    Article  CAS  Google Scholar 

  68. del Alamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R, et al. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta - Mol Cell Res [Internet] Elsevier BV. 2016;1863(7):1717–27. doi:10.1016/j.bbamcr.2016.03.003.

    Article  Google Scholar 

  69. Tzatzalos E, Abilez OJ, Shukla P, Wu JC. Engineered heart tissues and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev [Internet] Elsevier BV. 2016;96:234–44. Available from: http://dx.doi.org/10.1016/j.addr.2015.09.010.

    Article  CAS  Google Scholar 

  70. •• Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, et al. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Reports [Internet] The Authors. 2016;7(1):19–28. doi:10.1016/j.stemcr.2016.05.004. This is the first publication describing the utilization of 3D vascular tissue rings to study vascular disease using patient induced pluripotent stem cell derived vascular smooth muscle cells.

  71. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med [Internet]. 2008;14(2):213–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18193059.

    Article  CAS  Google Scholar 

  72. Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One [Internet]. 2014;9(2):e90406. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3937369&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  73. Lu T-Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun [Internet] Nature Publishing Group. 2013;4:2307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23942048.

    Google Scholar 

  74. Kamkin A, Kiseleva I, Isenberg G, Wagner KD, Günther J, Theres H, et al. Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol. 2003;82(1–3):111–20.

    Article  CAS  PubMed  Google Scholar 

  75. Kiando SR, Tucker NR, Castro-Vega L-J, Katz A, D’Escamard V, Tréard C, et al. PHACTR1 is a genetic susceptibility locus for fibromuscular dysplasia supporting its complex genetic pattern of inheritance. PLOS Genet [Internet]. 2016;12(10):e1006367. doi:10.1371/journal.pgen.1006367.

    Article  Google Scholar 

  76. •• Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, et al. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials [Internet] Elsevier Ltd. 2016;102:120–9. doi:10.1016/j.biomaterials.2016.06.010. This is the first report of tissue-engineered blood vessels using vascular smooth muscle cells derived from human induced pluripotent stem cells and sets the stage for autologous iPSC-based vessel repair.

  77. Patterson JT, Gilliland T, Maxfield MW, Church S, Shinoka T, Breuer CK. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med. 2013;7(3):409–19.

    Article  Google Scholar 

  78. Tara S, Kurobe H, Rocco KA, Maxfield MW, Best CA, Yi T, et al. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model. Atherosclerosis [Internet]. 2014;237(2):684–91. Available from: http://www.sciencedirect.com/science/article/pii/S0021915014014397.

    Article  CAS  Google Scholar 

  79. Kurobe H, Maxfield MW, Tara S, Rocco KA, Bagi PS, Yi T, et al. Development of small diameter nanofiber tissue engineered arterial grafts. PLoS One [Internet]. 2015;10(4):e0120328. doi:10.1371/journal.pone.0120328.

    Article  Google Scholar 

  80. Mirensky TL, Nelson GN, Brennan MP, Roh JD, Hibino N, Yi T, et al. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg [Internet] Elsevier Inc. 2009;44(6):1127–33. doi:10.1016/j.jpedsurg.2009.02.035.

    Article  Google Scholar 

  81. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood [Internet]. 2000;96(1):34–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10891427.

    CAS  Google Scholar 

  82. Hibino N, Yi T, Duncan DR, Rathore A, Dean E, Naito Y, et al. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. Faseb J [Internet]. 2011;25(12):4253–63. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3236622&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  83. Gao J, Niklason L, Langer R. Surface modification of polyglycolic acid meshes increases the seeding density and spreading of smooth muscle cells. J Biomed Mater Res. 1998;42:417–24.

    Article  CAS  PubMed  Google Scholar 

  84. Rufaihah AJ, Huang NF, Kim J, Herold J, Volz KS, Park TS, et al. Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. Am J Transl Res. 2013;5(1):21–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741–53.

    Article  CAS  PubMed  Google Scholar 

  86. Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10(1):53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hashizume R, Fujimoto KL, Hong Y, Guan J, Toma C, Tobita K, et al. Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: a preclinical study of a porous polyurethane material in a porcine model. J Thorac Cardiovasc Surg [Internet] Elsevier Inc. 2013;146(2):391–9. doi:10.1016/j.jtcvs.2012.11.013.

    Article  CAS  Google Scholar 

  88. Hashizume R, Hong Y, Takanari K, Fujimoto KL, Tobita K, Wagner WR. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials [Internet] Elsevier Ltd. 2013;34(30):7353–63. doi:10.1016/j.biomaterials.2013.06.020.

    Article  CAS  Google Scholar 

  89. Wei HJ, Chen CH, Lee WY, Chiu I, Hwang SM, Lin WW, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials. 2008;29(26):3547–56.

    Article  CAS  PubMed  Google Scholar 

  90. Bursac N, Loo Y, Leong K, Tung L. Novel anisotropic engineered cardiac tissues: studies of electrical propagation. Biochem Biophys Res Commun. 2007;361(4):847–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu S, Liu X, Hu T, Chu PK, Ho JPY, Chan YL, et al. A biomimetic hierarchical scaffold: natural growth of nanotitanates on three-dimensional microporous Ti-based metals. Nano Lett. 2008;8(11):3803–8.

    Article  CAS  PubMed  Google Scholar 

  92. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-dimensional cardiac patches. Nat Nanotechnol [Internet] Nature Publishing Group. 2011;6(11):720–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3208725&tool=pmcentrez&rendertype=abstract.

    Article  CAS  Google Scholar 

  93. Yang MC, Wang SS, Chou NK, Chi NH, Huang YY, Chang YL, et al. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials [Internet] Elsevier Ltd. 2009;30(22):3757–65. doi:10.1016/j.biomaterials.2009.03.057.

    Article  CAS  Google Scholar 

  94. Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials [Internet] Elsevier Ltd. 2016;112:264–74. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142961216305695.

    Article  Google Scholar 

  95. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47(4):658–87.

    Article  CAS  PubMed  Google Scholar 

  96. Potapova I, Plotnikov A, Lu Z, Danilo P, Valiunas V, Qu J, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res. 2004;94(7):952–9.

    Article  CAS  PubMed  Google Scholar 

  97. Valiunas V, Doronin S, Valiuniene L, Potapova I, Zuckerman J, Walcott B, et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol [Internet]. 2004;555(Pt 3):617–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14766937%5Cn http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1664864.

    Article  CAS  Google Scholar 

  98. Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo P, Lorell BH, Potapova IA, et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation. 2007;116(7):706–13.

    Article  PubMed  Google Scholar 

  99. Scavone A, Capilupo D, Mazzocchi N, Crespi A, Zoia S, Campostrini G, et al. Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells. Circ Res. 2013;113(4):389–98.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang H, Lau DH, Shlapakova IN, Zhao X, Danilo P, Robinson RB, et al. Implantation of sinoatrial node cells into canine right ventricle: biological pacing appears limited by the substrate. Cell Transplant. 2011;20(11–12):1907–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. •• Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol [Internet] Nature Publishing Group. 2016;35:1–16. doi:10.1038/nbt.3745. This paper is the first to demonstrate pacemaking ability of sinoatrial node cells derived from human iPSCs.

  102. Ionta V, Liang W, Kim EH, Rafie R, Giacomello A, Marbán E, et al. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Reports. 2015;4(1):129–42.

    Article  CAS  PubMed  Google Scholar 

  103. McNally EM, Svensson EC. Setting the pace: Tbx3 and Tbx18 in cardiac conduction system development. Circ Res. 2009;104(3):285–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments:

This work was supported by 1R01HL116705-01, 1R01HL132130-01, DOD 11959515, and Connecticut’s Regenerative Medicine Research Fund (CRMRF) 12-SCB-YALE-06, 15-RMB-YALE-08 (all to YQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Qyang.

Ethics declarations

Conflict of Interest

Christopher W. Anderson, Nicole Boardman, Jiesi Luo, Jinkyu Park, and Yibing Qyang declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, C.W., Boardman, N., Luo, J. et al. Stem Cells in Cardiovascular Medicine: the Road to Regenerative Therapies. Curr Cardiol Rep 19, 34 (2017). https://doi.org/10.1007/s11886-017-0841-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-017-0841-2

Keywords

Navigation