Skip to main content

Advertisement

Log in

The Current State of Stem Cell Therapy for Peripheral Artery Disease

  • Peripheral Vascular Disease (MH Shishehbor, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Patients with advanced peripheral arterial disease may develop critical limb ischemia with rest pain, non-healing ulcerations, and eventually may require major amputation despite currently available revascularization technologies. Stem cell therapies hold promise as novel therapeutics to promote vasculogenesis and improve tissue perfusion in these patients. This article reviews the current state of stem cell therapy for patients with peripheral arterial disease, with a focus on the cell types that have been studied, barriers to clinical development, and development of new endpoints for clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    Article  PubMed  Google Scholar 

  2. Izquierdo-Porrera AM, Gardner AW, Bradham DD, Montgomery PS, Sorkin JD, Powell CC, et al. Relationship between objective measures of peripheral arterial disease severity to self-reported quality of life in older adults with intermittent claudication. J Vasc Surg. 2005;41(4):625–30.

    Article  PubMed  Google Scholar 

  3. O'Hare AM, Katz R, Shlipak MG, Cushman M, Newman AB. Mortality and cardiovascular risk across the ankle-arm index spectrum: results from the Cardiovascular Health Study. Circulation. 2006;113(3):388–93.

    Article  PubMed  Google Scholar 

  4. ACC/AHA. 2005 practice Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic). Circulation. 2006;113(11):1474–547.

    Article  Google Scholar 

  5. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA: J Am Med Assoc. 2001;286(11):1317–24.

    Article  CAS  Google Scholar 

  6. Writing Group M, Writing Committee M, Accf/Aha Task Force M. 2011 ACCF/AHA Focused Update of the Guideline for the Management of patients with peripheral artery disease (Updating the 2005 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2011;124(18):2020–45.

    Article  Google Scholar 

  7. European Stroke O, Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement D, et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(22):2851–906.

    Article  PubMed  Google Scholar 

  8. Conte MS. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) and the (hoped for) dawn of evidence-based treatment for advanced limb ischemia. J Vasc Surg. 2010;51(5 Suppl):69S–75.

    Article  PubMed  Google Scholar 

  9. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. The Lancet. 2005;366(9501):1925-1934.

  10. van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res. 2001;49(3):543–53.

    Article  PubMed  Google Scholar 

  11. Asahara T, Kawamoto A, Masuda H. Concise review: Circulating endothelial progenitor cells for vascular medicine. Stem Cells. 2011;29(11):1650–5.

    Article  CAS  PubMed  Google Scholar 

  12. Asahara T. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science. 1997;275(5302):964–6.

    Article  CAS  PubMed  Google Scholar 

  13. Cuende N, Rico L, Herrera C. Concise review: bone marrow mononuclear cells for the treatment of ischemic syndromes: medicinal product or cell transplantation? Stem Cells Transl Med. 2012;1(5):403–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone Marrow Origin of Endothelial Progenitor Cells Responsible for Postnatal Vasculogenesis in Physiological and Pathological Neovascularization. Circ Res. 1999;85(3):221–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, et al. Augmentation of Postnatal Neovascularization With Autologous Bone Marrow Transplantation. Circulation. 2001;103(6):897–903.

    Article  CAS  PubMed  Google Scholar 

  16. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35.

    Article  PubMed  Google Scholar 

  17. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60.

    Article  PubMed  Google Scholar 

  18. Ozturk A, Kucukardali Y, Tangi F, Erikci A, Uzun G, Bashekim C, et al. Therapeutical potential of autologous peripheral blood mononuclear cell transplantation in patients with type 2 diabetic critical limb ischemia. J Diabetes Complicat. 2012;26(1):29–33.

    Article  PubMed  Google Scholar 

  19. Pittenger MF. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  20. Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res. 2005;66(3):543–51.

    Article  CAS  PubMed  Google Scholar 

  21. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5.

    Article  CAS  PubMed  Google Scholar 

  22. •• Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36. This randomized, controlled trial in diabetics with critical limb ischemia demonstrated improvements in ABIs, TcO2, and pain free walking time associated with both BM-MNCs and BM-MSCs. BM-MSCs showed faster ulcer healing compared to BM-MNC.

    Article  PubMed  Google Scholar 

  23. Yan J, Tie G, Xu TY, Cecchini K, Messina LM. Mesenchymal Stem Cells as a Treatment for Peripheral Arterial Disease: Current Status and Potential Impact of Type II Diabetes on Their Therapeutic Efficacy. Stem Cell Rev. 2013;9(3):360–72.

    Article  CAS  PubMed  Google Scholar 

  24. Bartel RL, Booth E, Cramer C, Ledford K, Watling S, Zeigler F. From Bench to Bedside: Review of Gene and Cell-Based Therapies and the Slow Advancement into Phase 3 Clinical Trials, with a Focus on Aastrom's Ixmyelocel-T. Stem Cell Rev. 2013;9(3):373–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E, et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 2011;54(4):1032–41.

    Article  PubMed  Google Scholar 

  26. Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther: J Am Soc Gene Ther. 2012;20(6):1280–6.

    Article  CAS  Google Scholar 

  27. Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract. 2012;66(4):384–93.

    Article  CAS  PubMed  Google Scholar 

  28. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104(6):1648–55.

    Article  CAS  PubMed  Google Scholar 

  29. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107(5):2162–9.

    Article  CAS  PubMed  Google Scholar 

  30. Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, et al. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113(21):5340–51.

    Article  CAS  PubMed  Google Scholar 

  31. Perin EC, Silva G, Gahremanpour A, Canales J, Zheng Y, Cabreira-Hansen MG, et al. A randomized, controlled study of autologous therapy with bone marrow-derived aldehyde dehydrogenase bright cells in patients with critical limb ischemia. Catheter Cardiovasc Interv: Off J Soc Cardiac Angiography Interv. 2011;78(7):1060–7.

    Article  Google Scholar 

  32. •• Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5(6):821–30. This randomized, controlled trial showed that G-CSF mobilized, CD34+ peripheral blood is associated with a dose related trend toward reduced amputations in patients with critical limb ischemia.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Szoke K, Brinchmann JE. Concise review: therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med. 2012;1(9):658–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004;110(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  35. Murohara T. Autologous adipose tissue as a new source of progenitor cells for therapeutic angiogenesis. J Cardiol. 2009;53(2):155–63.

    Article  PubMed  Google Scholar 

  36. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  37. Marino G, Moraci M, Armenia E, Orabona C, Sergio R, De Sena G, et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013.

  38. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  39. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  CAS  PubMed  Google Scholar 

  40. Taura D, Sone M, Homma K, Oyamada N, Takahashi K, Tamura N, et al. Induction and isolation of vascular cells from human induced pluripotent stem cells–brief report. Arterioscler Thromb Vasc Biol. 2009;29(7):1100–3.

    Article  CAS  PubMed  Google Scholar 

  41. • Rufaihah AJ, Huang NF, Jame S, Lee JC, Nguyen HN, Byers B, et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2011;31(11):e72–9. This group demonstrated that human induced pluripotent stem cells can differentiate into human endothelial cells in vitro, and improve perfusion in mice with hind limb ischemia.

    Article  CAS  PubMed  Google Scholar 

  42. • Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121(9):1113–23. This group successfully transformed human induced pluripotent stem cells into to MSCs which when administered to mice with hind limb ischemia resulted in improved perfusion and blood vessel formation, greater than that associated BM-MSC.

    Article  PubMed  Google Scholar 

  43. Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013;11:143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cho SW, Moon SH, Lee SH, Kang SW, Kim J, Lim JM, et al. Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation. 2007;116(21):2409–19.

    Article  CAS  PubMed  Google Scholar 

  45. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105(11):1527–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wong WT, Huang NF, Botham CM, Sayed N, Cooke JP. Endothelial cells derived from nuclear reprogramming. Circ Res. 2012;111(10):1363–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112(9):1288–302.

    Article  CAS  PubMed  Google Scholar 

  48. • Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schluter M, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4(1):26–37. This randomized, controlled trial showed that BM-MNC can be safely administered by intra-arterial injection in patient with critical limb ischemia. Treatment was associated with significant improvements in ulcer size and pain score compared to placebo.

    Article  PubMed  Google Scholar 

  49. Kinlay S. Outcomes for clinical studies assessing drug and revascularization therapies for claudication and critical limb ischemia in peripheral artery disease. Circulation. 2013;127(11):1241–50.

    Article  PubMed  Google Scholar 

  50. Wright KL, Seiberlich N, Jesberger JA, Nakamoto DA, Muzic RF, Jr., Griswold MA. Simultaneous magnetic resonance angiography and perfusion (MRAP) measurement: Initial application in lower extremity skeletal muscle. J Magn Reson Imaging: JMRI. 2013.

  51. Subhash HM, Leahy MJ. Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography. J Biomed Opt. 2014;19(2):21103.

    Article  PubMed  Google Scholar 

  52. Srinivasan VJ, Jiang JY, Yaseen MA, Radhakrishnan H, Wu W, Barry S, et al. Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. Opt Lett. 2010;35(1):43–5.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Benoit E, O’Donnell Jr TF, Iafrati MD, Asher E, Bandyk DF, Hallett JW, et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med. 2011;9:165.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mohammadzadeh L, Samedanifard SH, Keshavarzi A, Alimoghaddam K, Larijani B, Ghavamzadeh A, et al. Therapeutic outcomes of transplanting autologous granulocyte colony-stimulating factor-mobilised peripheral mononuclear cells in diabetic patients with critical limb ischaemia. Exp Clin Endocrinol Diabetes: Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2013;121(1):48–53.

    Article  CAS  Google Scholar 

  55. Prochazka V, Gumulec J, Jaluvka F, Salounova D, Jonszta T, Czerny D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Nitin K. Gupta, Ehrin J. Armstrong, and Sahil A. Parikh declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil A. Parikh.

Additional information

This article is part of the Topical Collection on Peripheral Vascular Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N.K., Armstrong, E.J. & Parikh, S.A. The Current State of Stem Cell Therapy for Peripheral Artery Disease. Curr Cardiol Rep 16, 447 (2014). https://doi.org/10.1007/s11886-013-0447-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0447-2

Keywords

Navigation