Skip to main content

Advertisement

Log in

Gene Therapy and Overactive Bladder

  • REVIEW
  • Published:
Current Bladder Dysfunction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Within the last decade, a number of gene therapies have been developed as a treatment option for monogenic diseases. Overactive bladder is a multifactorial syndrome with likely many underlying causes and regulatory components. The goal of this paper is to review current gene therapy in and outside of the genitourinary system, review the pathophysiology and genetics of OAB, and discuss recent advances in application of this technology for OAB treatment.

Recent Findings

Various genes have been found to be upregulated in OAB patients including receptors involved in purinergic signaling, gap junctions between detrusor smooth muscle cells, proteins involved in detrusor myocyte cytoskeletal dynamics, cholinergic receptors, and some types of membrane channels. Fewer genes are downregulated but include receptors in purinergic signaling and a channel critical for detrusor smooth muscle cell relaxation. Results of a recent phase 2 trial exploiting a gene coding for a portion of a potassium channel suggest that gene therapy may have emerging relevance in OAB therapy.

Summary

OAB is a syndrome, and the pathophysiology is incompletely understood but likely is due to a combination of altered afferent signaling at the level of the bladder modified by a constant hyper- or hypo-excitability of the detrusor myocyte. Understanding the complex pathways underlying OAB as well as the related genetic components of the normal and abnormal bladder may provide novel therapeutic options for this widespread condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Drake MJ. Do we need a new definition of the overactive bladder syndrome? ICI-RS 2013. Neurourol Urodyn. 2014;33(5):622–4. https://doi.org/10.1002/nau.22609.

    Article  PubMed  Google Scholar 

  2. Coyne KS, Sexton CC, Bell JA, Thompson CL, Dmochowski R, Bavendam T, et al. The prevalence of lower urinary tract symptoms (LUTS) and overactive bladder (OAB) by racial/ethnic group and age: Results from OAB-POLL. Neurourol Urodyn. 2013;32(3):230–7. https://doi.org/10.1002/nau.22295.

    Article  PubMed  Google Scholar 

  3. Irwin DE, Milsom I, Hunskaar S, Reilly K, Kopp Z, Herschorn S, et al. Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol. 2006;50(6):1306–14. https://doi.org/10.1016/j.eururo.2006.09.019. discussion 14-5.

    Article  PubMed  Google Scholar 

  4. Ganz ML, Smalarz AM, Krupski TL, Anger JT, Hu JC, Wittrup-Jensen KU, et al. Economic costs of overactive bladder in the United States. Urology. 2010;75(3):526-532.e18. https://doi.org/10.1016/j.urology.2009.06.096.

    Article  PubMed  Google Scholar 

  5. • Lightner DJ, Gomelsky A, Souter L, Vasavada SP. Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline amendment 2019. J Urol. 2019;202(3):558–63. https://doi.org/10.1097/ju.0000000000000309. AUA/SUFU OAB Guideline reflecting relevant literature published through October 2018.

    Article  PubMed  Google Scholar 

  6. Fantl JA, Wyman JF, McClish DK, Harkins SW, Elswick RK, Taylor JR, et al. Efficacy of bladder training in older women with urinary incontinence. JAMA. 1991;265(5):609–13.

    Article  CAS  PubMed  Google Scholar 

  7. Coupland CAC, Hill T, Dening T, Morriss R, Moore M, Hippisley-Cox J. Anticholinergic drug exposure and the risk of dementia: A nested case-control study. JAMA Intern Med. 2019;179(8):1084–93. https://doi.org/10.1001/jamainternmed.2019.0677.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peters KM, Killinger KA, Gilleran JP, Bartley J, Wolfert C, Boura JA. Predictors of reoperation after sacral neuromodulation: a single institution evaluation of over 400 patients. Neurourol Urodyn. 2017;36(2):354–9. https://doi.org/10.1002/nau.22929.

    Article  PubMed  Google Scholar 

  9. Rogers A, Bragg S, Ferrante K, Thenuwara C, Peterson DKL. Pivotal study of leadless tibial nerve stimulation with eCoin® for urgency urinary incontinence: an open-label, single arm trial. J Urol. 2021;206(2):399–408. https://doi.org/10.1097/ju.0000000000001733.

    Article  PubMed  Google Scholar 

  10. Chapple C, Sievert K-D, MacDiarmid S, Khullar V, Radziszewski P, Nardo C, et al. OnabotulinumtoxinA 100 U significantly improves all idiopathic overactive bladder symptoms and quality of life in patients with overactive bladder and urinary incontinence: a randomised, double-blind, placebo-controlled trial. Eur Urol. 2013;64(2):249–56. https://doi.org/10.1016/j.eururo.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  11. Nitti VW, Dmochowski R, Herschorn S, Sand P, Thompson C, Nardo C, et al. OnabotulinumtoxinA for the treatment of patients with overactive bladder and urinary incontinence: results of a phase 3, randomized, placebo controlled trial. J Urol. 2013;189(6):2186–93. https://doi.org/10.1016/j.juro.2012.12.022.

    Article  CAS  PubMed  Google Scholar 

  12. Scheller EL, Krebsbach PH. Gene therapy: design and prospects for craniofacial regeneration. J Dent Res. 2009;88(7):585–96. https://doi.org/10.1177/0022034509337480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. https://doi.org/10.1038/s41392-021-00487-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson WF. Human gene therapy. Science. 1992;256(5058):808–13. https://doi.org/10.1126/science.1589762.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. John Wiley and Sons LTD, Online. 2023. https://a873679.fmphost.com/fmi/webd/GTCT. Accessed 1/9/24

  16. Cellular & Gene Prodcuts. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products (2023). Accessed 9/27/2023 2023.

  17. Pipe SW, Leebeek FWG, Recht M, Key NS, Castaman G, Miesbach W, et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N Engl J Med. 2023;388(8):706–18. https://doi.org/10.1056/NEJMoa2211644.

    Article  CAS  PubMed  Google Scholar 

  18. Ozelo MC, Mahlangu J, Pasi KJ, Giermasz A, Leavitt AD, Laffan M, et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N Engl J Med. 2022;386(11):1013–25. https://doi.org/10.1056/NEJMoa2113708.

    Article  CAS  PubMed  Google Scholar 

  19. Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–93. https://doi.org/10.1016/s1474-4422(21)00001-6.

    Article  CAS  PubMed  Google Scholar 

  20. Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;126(9):1273–85. https://doi.org/10.1016/j.ophtha.2019.06.017.

    Article  PubMed  Google Scholar 

  21. Guide SV, Gonzalez ME, Bagci IS, Agostini B, Chen H, Feeney G, et al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis bullosa. N Engl J Med. 2022;387(24):2211–9. https://doi.org/10.1056/NEJMoa2206663.

    Article  CAS  PubMed  Google Scholar 

  22. • Boorjian SA, Alemozaffar M, Konety BR, Shore ND, Gomella LG, Kamat AM, et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: A single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 2021;22(1):107–17. https://doi.org/10.1016/s1470-2045(20)30540-4. First FDA-approved gene therapy in the genitourinary system demonstrating reduction in recurrence of bladder cancer after instillation of adenovirus containing interferon alpha-2b.

  23. Keay SK, Birder LA, Chai TC. Evidence for bladder urothelial pathophysiology in functional bladder disorders. Biomed Res Int. 2014;2014:865463. https://doi.org/10.1155/2014/865463.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brading AF. A myogenic basis for the overactive bladder. Urology. 1997;50(6A Suppl):57–67. https://doi.org/10.1016/s0090-4295(97)00591-8. discussion 8-73.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Ghazo MA, Ghalayini IF, Al-Azab R, Hani OB, Matani YS, Haddad Y. Urodynamic detrusor overactivity in patients with overactive bladder symptoms. Int Neurourol J. 2011;15(1):48–54. https://doi.org/10.5213/inj.2011.15.1.48.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burgers R, de Jong TP, Visser M, Di Lorenzo C, Dijkgraaf MG, Benninga MA. Functional defecation disorders in children with lower urinary tract symptoms. J Urol. 2013;189(5):1886–91. https://doi.org/10.1016/j.juro.2012.10.064.

    Article  PubMed  Google Scholar 

  27. Carter D, Beer-Gabel M. Lower urinary tract symptoms in chronically constipated women. Int Urogynecol J. 2012;23(12):1785–9. https://doi.org/10.1007/s00192-012-1812-1.

    Article  PubMed  Google Scholar 

  28. Wu C, Sui GP, Fry CH. Purinergic regulation of guinea pig suburothelial myofibroblasts. J Physiol. 2004;559(Pt 1):231–43. https://doi.org/10.1113/jphysiol.2004.067934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O’Reilly BA, Kosaka AH, Knight GF, Chang TK, Ford AP, Rymer JM, et al. P2X receptors and their role in female idiopathic detrusor instability. J Urol. 2002;167(1):157–64.

    Article  CAS  PubMed  Google Scholar 

  30. Ray FR, Moore KH, Hansen MA, Barden JA. Loss of purinergic P2X receptor innervation in human detrusor and subepithelium from adults with sensory urgency. Cell Tissue Res. 2003;314(3):351–9. https://doi.org/10.1007/s00441-003-0788-z.

    Article  CAS  PubMed  Google Scholar 

  31. Fry CH, Ikeda Y, Harvey R, Wu C, Sui GP. Control of bladder function by peripheral nerves: avenues for novel drug targets. Urology. 2004;63(3 Suppl 1):24–31. https://doi.org/10.1016/j.urology.2003.10.031.

    Article  PubMed  Google Scholar 

  32. Neuhaus J, Pfeiffer F, Wolburg H, Horn L-C, Dorschner W. Alterations in connexin expression in the bladder of patients with urge symptoms. BJU Int. 2005;96(4):670–6. https://doi.org/10.1111/j.1464-410X.2005.05703.x.

    Article  CAS  PubMed  Google Scholar 

  33. Maake C, Landman M, Wang X, Schmid DM, Ziegler U, John H. Expression of smoothelin in the normal and the overactive human bladder. J Urol. 2006;175(3 Pt 1):1152–7. https://doi.org/10.1016/s0022-5347(05)00315-0.

    Article  CAS  PubMed  Google Scholar 

  34. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84(3):935–86. https://doi.org/10.1152/physrev.00038.2003.

    Article  CAS  PubMed  Google Scholar 

  35. Hristov KL, Afeli SA, Parajuli SP, Cheng Q, Rovner ES, Petkov GV. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+)-activated K(+) channels. PLoS One. 2013;8(7):e68052. https://doi.org/10.1371/journal.pone.0068052. Detrusor overactivity is associated with decreased BK channel expression.

  36. Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, Benham CD, et al. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol. 2006;6:6. https://doi.org/10.1186/1471-2490-6-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tae BS, Park TY, Jeon BJ, Chung H, Lee YH, Park JY, et al. Seasonal variation of overactive bladder symptoms in female patients. Int Neurourol J. 2019;23(4):334–40. https://doi.org/10.5213/inj.1938078.039.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roberts MWG, Sui G, Wu R, Rong W, Wildman S, Montgomery B, et al. TRPV4 receptor as a functional sensory molecule in bladder urothelium: stretch-independent, tissue-specific actions and pathological implications. Faseb j. 2020;34(1):263–86. https://doi.org/10.1096/fj.201900961RR.

    Article  CAS  PubMed  Google Scholar 

  39. Mukerji G, Yiangou Y, Grogono J, Underwood J, Agarwal SK, Khullar V, et al. Localization of M2 and M3 muscarinic receptors in human bladder disorders and their clinical correlations. J Urol. 2006;176(1):367–73. https://doi.org/10.1016/s0022-5347(06)00563-5.

    Article  CAS  PubMed  Google Scholar 

  40. Isali I, McClellan P, Wong TR, Sun C, Stout AC, Schumacher FR, et al. A systematic review and in silico study of potential genetic markers implicated in cases of overactive bladder. Am J Obstet Gynecol. 2023;228(1):36–47.e3. https://doi.org/10.1016/j.ajog.2022.07.044. Review article analyzing upregulated OAB genes revealing overlap in calcium signaling pathways and neuroactive ligand-receptor interaction.

  41. Ohi Y, Yamamura H, Nagano N, Ohya S, Muraki K, Watanabe M, et al. Local Ca(2+) transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea-pig vas deferens and urinary bladder. J Physiol. 2001;534(Pt. 2):313–26. https://doi.org/10.1111/j.1469-7793.2001.t01-3-00313.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Latorre R, Miller C. Conduction and selectivity in potassium channels. J Membr Biol. 1983;71(1–2):11–30. https://doi.org/10.1007/bf01870671.

    Article  CAS  PubMed  Google Scholar 

  43. Tseng-Crank J, Foster CD, Krause JD, Mertz R, Godinot N, DiChiara TJ, et al. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron. 1994;13(6):1315–30. https://doi.org/10.1016/0896-6273(94)90418-9.

    Article  CAS  PubMed  Google Scholar 

  44. •• Rovner E, Chai TC, Jacobs S, Christ G, Andersson KE, Efros M, et al. Evaluating the safety and potential activity of URO-902 (hMaxi-K) gene transfer by intravesical instillation or direct injection into the bladder wall in female participants with idiopathic (non-neurogenic) overactive bladder syndrome and detrusor overactivity from two double-blind, imbalanced, placebo-controlled randomized phase 1 trials. Neurourol Urodyn. 2020;39(2):744–53. https://doi.org/10.1002/nau.24272. Intravesical administration or intradetrusor injection of URO-902 is safe and not associated with any significant adverse events with clinical significance in reduction of urgency episodes and number of voids in those receiving injection.

  45. • Andersson KE, Christ GJ, Davies KP, Rovner ES, Melman A. Gene therapy for overactive bladder: A review of BK-channel α-subunit gene transfer. Ther Clin Risk Manag. 2021;17:589–99. https://doi.org/10.2147/tcrm.S291798. Comprehensive review of BK-channel and studies in ED as well as URO-902.

  46. Melman A, Bar-Chama N, McCullough A, Davies K, Christ G. The first human trial for gene transfer therapy for the treatment of erectile dysfunction: Preliminary results. Eur Urol. 2005;48(2):314–8. https://doi.org/10.1016/j.eururo.2005.05.005.

    Article  CAS  PubMed  Google Scholar 

  47. Melman A, Bar-Chama N, McCullough A, Davies K, Christ G. hMaxi-K gene transfer in males with erectile dysfunction: Results of the first human trial. Hum Gene Ther. 2006;17(12):1165–76. https://doi.org/10.1089/hum.2006.17.1165.

    Article  CAS  PubMed  Google Scholar 

  48. Arun N. Treatment of erectile dysfunction with hMaxi-K gene transfer: Safety report from phase IIA study. Eur Urol. 2018;12(2).

  49. •• Kenneth Peters EE, Susan Kalota, Kaiser Robertson, Sijian Ge, Jingmei Lu, Hanh Badger, Salim Mujais. Long-term efficacy and safety of URO-902 (PVAX/HSLO) in women with overactive bladder and urge urinary incontinence: Final results of a phase 2A trial. . Journal of Urology. 2023;209:e1184. Larger trial demonstrating reduced number of voids per day and urgency episodes at 12 weeks after intradetrusor injection of URO-902.

Download references

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and E.R. equally contributed to the manuscript.

Corresponding author

Correspondence to Eric Rovner.

Ethics declarations

Competing interests

E.R. was the central urodynamics reader and consultant on behalf of Ion Innovations and Urovant in the study of URO-902

Human and Animal Rights and Informed Consent

This article does contain studies with human or animal subjects, but these interventions were not directly performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrick, S., Rovner, E. Gene Therapy and Overactive Bladder. Curr Bladder Dysfunct Rep 19, 37–43 (2024). https://doi.org/10.1007/s11884-023-00733-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11884-023-00733-3

Keywords

Navigation