APOA1: a Protein with Multiple Therapeutic Functions


Purpose of the Review

Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states.

Recent Findings

Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1.


APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Soutar AK, Garner CW, Baker HN, Sparrow JT, Jackson RL, Gotto AM, et al. Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase. Biochemistry. 1975;14(14):3057–64.

    CAS  PubMed  Google Scholar 

  2. 2.

    Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125(15):1905–19.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Neary RH, Gowland E. Stability of free apolipoprotein A-1 concentration in serum, and its measurement in normal and hyperlipidemic subjects. Clin Chem. 1987;33(7):1163–9.

    CAS  PubMed  Google Scholar 

  4. 4.

    Kee P, Rye KA, Taylor JL, Barrett PH, Barter PJ. Metabolism of apoA-I as lipid-free protein or as component of discoidal and spherical reconstituted HDLs: studies in wild-type and hepatic lipase transgenic rabbits. Arterioscler Thromb Vasc Biol. 2002;22(11):1912–7.

    CAS  PubMed  Google Scholar 

  5. 5.

    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    CAS  PubMed  Google Scholar 

  6. 6.

    Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    CAS  PubMed  Google Scholar 

  7. 7.

    Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376(20):1933–42.

    PubMed  Google Scholar 

  8. 8.

    HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–12.

    Google Scholar 

  9. 9.

    Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.

    Google Scholar 

  10. 10.

    Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353(6341):265–7.

    CAS  PubMed  Google Scholar 

  11. 11.

    Moore RE, Navab M, Millar JS, Zimetti F, Hama S, Rothblat GH, et al. Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation. Circ Res. 2005;97(8):763–71.

    CAS  PubMed  Google Scholar 

  12. 12.

    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    CAS  Google Scholar 

  13. 13.

    Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(11):1987–94.

    CAS  PubMed  Google Scholar 

  14. 14.

    Baker PW, Rye KA, Gamble JR, Vadas MA, Barter PJ. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. J Lipid Res. 1999;40(2):345–53.

    CAS  PubMed  Google Scholar 

  15. 15.

    Wu BJ, Chen K, Shrestha S, Ong KL, Barter PJ, Rye KA. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3β-hydroxysteroid-Δ24 reductase expression and inducing heme oxygenase-1. Circ Res. 2013;112(2):278–88.

    CAS  PubMed  Google Scholar 

  16. 16.

    McGrath KC, Li XH, Puranik R, et al. Role of 3β-hydroxysteroid-Δ24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(6):877–82.

    CAS  PubMed  Google Scholar 

  17. 17.

    Pan B, Kong J, Jin J, Kong J, He Y, Dong S, et al. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells. Biochim Biophys Acta. 2016;1861(6):501–12.

    CAS  PubMed  Google Scholar 

  18. 18.

    Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism. 2018;87:36–47.

    CAS  PubMed  Google Scholar 

  19. 19.

    •• Fotakis P, Kothari V, Thomas DG, et al. Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over proinflammatory effects in atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2019;39(12):e253–72 This publication explains why APOA1 has pro- and anti-inflammatory effects in macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tang C, Houston BA, Storey C, LeBoeuf RC. Both STAT3 activation and cholesterol efflux contribute to the anti-inflammatory effect of apoA-I/ABCA1 interaction in macrophages. J Lipid Res. 2016;57(5):848–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yvan-Charvet L, Matsuura F, Wang N, Bamberger MJ, Nguyen T, Rinninger F, et al. Inhibition of cholesteryl ester transfer protein by torcetrapib modestly increases macrophage cholesterol efflux to HDL. Arterioscler Thromb Vasc Biol. 2007;27(5):1132–8.

    CAS  PubMed  Google Scholar 

  22. 22.

    Zhang M, Zhao GJ, Yin K, Xia XD, Gong D, Zhao ZW, et al. Apolipoprotein A-1 binding protein inhibits inflammatory signaling pathways by binding to apolipoprotein A-1 in THP-1 macrophages. Circ J. 2018;82(5):1396–404.

    CAS  PubMed  Google Scholar 

  23. 23.

    De Nardo D, Labzin LI, Kono H, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 2014;15(2):152–60.

    PubMed  Google Scholar 

  24. 24.

    Smoak KA, Aloor JJ, Madenspacher J, Merrick BA, Collins JB, Zhu X, et al. Myeloid differentiation primary response protein 88 couples reverse cholesterol transport to inflammation. Cell Metab. 2010;11(6):493–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    van der Vorst EPC, Theodorou K, Wu Y, Hoeksema MA, Goossens P, Bursill CA, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab. 2017;25(1):197–207.

    PubMed  Google Scholar 

  26. 26.

    Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Milasan A, Jean G, Dallaire F, et al. Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. J Am Heart Assoc. 2017;6(9):e006892.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kaul S, Xu H, Zabalawi M, et al. Lipid-free apolipoprotein A-I reduces progression of atherosclerosis by mobilizing microdomain cholesterol and attenuating the number of CD131 expressing cells: monitoring cholesterol homeostasis using the cellular ester to total cholesterol ratio. J Am Heart Assoc. 2016;5(11):e004401.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gaddis DE, Padgett LE, Wu R, McSkimming C, Romines V, Taylor AM, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9(1):1095.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    • Wacker BK, Dronadula N, Zhang J, Dichek DA. Local vascular gene therapy with apolipoprotein A-I to promote regression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(2):316–27 This study provides compelling evidence that increasing plasma APOA1 levels reduces atherosclerosis over and above what can be achieved with aggressive lipid lowering therapies.

  31. 31.

    Morton J, Bao S, Vanags LZ, Tsatralis T, Ridiandries A, Siu CW, et al. Strikingly different atheroprotective effects of apolipoprotein A-I in early- versus late-stage atherosclerosis. JACC Basic Transl Sci. 2018;3(2):187–99.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    •• Barrett TJ, Distel E, Murphy AJ, et al. Apolipoprotein AI promotes atherosclerosis regression in diabetic mice by suppressing myelopoiesis and plaque inflammation. Circulation. 2019;140(14):1170–84 APOA1 reduces diabetes-accelerated atherosclerosis by reducing inflammation and inhibiting the production of myeloid cells in bone marrow.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):806–14.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, et al. Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3(9):815–22.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Gibson MC, Korjian S, Tricoci P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I Trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134(24):1918–30.

    Google Scholar 

  36. 36.

    Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Öörni K, et al. Carboxyl-terminal cleavage of apolipoprotein A-I by human mast cell chymase impairs its anti-inflammatory properties. Arterioscler Thromb Vasc Biol. 2016;36(2):274–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Dinnes DL, White MY, Kockx M, et al. Human macrophage cathepsin B-mediated C-terminal cleavage of apolipoprotein A-I at Ser228 severely impairs antiatherogenic capacity. FASEB J. 2016;30(12):4239–55.

    CAS  PubMed  Google Scholar 

  38. 38.

    Amin R, Muthuramu I, Aboumsallem JP, Mishra M, Jacobs F, De Geest B. Selective HDL-raising human apo A-I gene therapy counteracts cardiac hypertrophy, reduces myocardial fibrosis, and improves cardiac function in mice with chronic pressure overload. Int J Mol Sci 2017;18(9):2012

  39. 39.

    Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, et al. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, PI3K-, and Akt-dependent manner. Am J Physiol Heart Circ Physiol. 2018;314(1):H31–44.

    PubMed  Google Scholar 

  40. 40.

    Murphy AJ, Bijl N, Yvan-Charvet L, Welch CB, Bhagwat N, Reheman A, et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat Med. 2013;19(5):586–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    van der Stoep M, Korporaal SJ, Van Eck M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc Res. 2014;103(3):362–71.

    PubMed  Google Scholar 

  42. 42.

    Nicholls SJ, Cutri B, Worthley SG, Kee P, Rye KA, Bao S, et al. Impact of short-term administration of high-density lipoproteins and atorvastatin on atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol. 2005;25(11):2416–21.

    CAS  PubMed  Google Scholar 

  43. 43.

    Buga GM, Navab M, Imaizumi S, Reddy ST, Yekta B, Hough G, et al. L-4F alters hyperlipidemic (but not healthy) mouse plasma to reduce platelet aggregation. Arterioscler Thromb Vasc Biol. 2010;30(2):283–9.

    CAS  PubMed  Google Scholar 

  44. 44.

    Li D, Weng S, Yang B, Zander DS, Saldeen T, Nichols WW, et al. Inhibition of arterial thrombus formation by apoA1 Milano. Arterioscler Thromb Vasc Biol. 1999;19(2):378–83.

    CAS  PubMed  Google Scholar 

  45. 45.

    Gleeson EM, Rehill AM, Willis Fox O, Ni Ainle F, McDonnell CJ, Rushe HJ, et al. Apolipoprotein A-I enhances activated protein C cytoprotective activity. Blood Adv. 2020;4(11):2404–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Chung DW, Chen J, Ling M, Fu X, Blevins T, Parsons S, et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood. 2016;127(5):637–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Vanags LZ, Tan JTM, Galougahi KK, Schaefer A, Wise SG, Murphy A, et al. Apolipoprotein A-I reduces in-stent restenosis and platelet activation and alters neointimal cellular phenotype. JACC Basic Transl Sci. 2018;3(2):200–9.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Brill A, Yesilaltay A, De Meyer SF, et al. Extrahepatic high-density lipoprotein receptor SR-BI and apoA-I protect against deep vein thrombosis in mice. Arterioscler Thromb Vasc Biol. 2012;32(8):1841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.

    PubMed  Google Scholar 

  50. 50.

    Rawshani A, Rawshani A, Franzen S, et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2017;135(16):1522–31.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Das SR, Everett BM, Birtcher KK, Brown JM, Cefalu WT, Januzzi JL Jr, et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol. 2018;72(24):3200–23.

    PubMed  Google Scholar 

  52. 52.

    Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119(15):2103–11.

    CAS  PubMed  Google Scholar 

  53. 53.

    Barter PJ, Rye KA, Tardif JC, Waters DD, Boekholdt SM, Breazna A, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation. 2011;124(5):555–62.

    CAS  PubMed  Google Scholar 

  54. 54.

    Schwartz GG, Leiter LA, Ballantyne CM, Barter PJ, Black DM, Kallend D, et al. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care. 2020;43(5):1077–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Fryirs MA, Barter PJ, Appavoo M, Tuch BE, Tabet F, Heather AK, et al. Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol. 2010;30(8):1642–8.

    CAS  PubMed  Google Scholar 

  56. 56.

    Cochran BJ, Bisoendial RJ, Hou L, Glaros EN, Rossy J, Thomas SR, et al. Apolipoprotein A-I increases insulin secretion and production from pancreatic beta-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism. Arterioscler Thromb Vasc Biol. 2014;34(10):2261–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Matsumura K, Tamasawa N, Daimon M. Possible insulinotropic action of apolipoprotein A-I through the ABCA1/Cdc42/cAMP/PKA pathway in MIN6 cells. Front Endocrinol (Lausanne). 2018;9:645.

    Google Scholar 

  58. 58.

    • Nilsson O, Del Giudice R, Nagao M, Gronberg C, Eliasson L, Lagerstedt JO. Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion. Biochim Biophys Acta Mol Basis Dis. 2020;1866(3):165613 This study shows that APOA1 is endocytosed by β-cells, where it increases insulin secretion by mobilising insulin granules to the cell surface and converting proinsulin into insulin.

    CAS  PubMed  Google Scholar 

  59. 59.

    Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes. 2007;56(9):2328–38.

    CAS  PubMed  Google Scholar 

  60. 60.

    Hou L, Tang S, Wu BJ, Ong KL, Westerterp M, Barter PJ, et al. Apolipoprotein A-I improves pancreatic beta-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1. FASEB J. 2019;33(7):8479–89.

    CAS  PubMed  Google Scholar 

  61. 61.

    Rutti S, Ehses JA, Sibler RA, et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 2009;150(10):4521–30.

    CAS  PubMed  Google Scholar 

  62. 62.

    Yalcinkaya M, Kerksiek A, Gebert K, Annema W, Sibler R, Radosavljevic S, et al. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic beta-cells in vitro by activation of Smoothened. J Lipid Res. 2020;61(4):492–504.

    CAS  PubMed  Google Scholar 

  63. 63.

    Stenkula KG, Lindahl M, Petrlova J, Dalla-Riva J, Göransson O, Cushman SW, et al. Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia. 2014;57(4):797–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Domingo-Espin J, Lindahl M, Nilsson-Wolanin O, Cushman SW, Stenkula KG, Lagerstedt JO. Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal. Diabetes. 2016;65(7):1838–48.

    CAS  PubMed  Google Scholar 

  65. 65.

    Cochran BJ, Ryder WJ, Parmar A, Tang S, Reilhac A, Arthur A, et al. In vivo PET imaging with [18F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia. 2016;59(9):1977–84.

    CAS  PubMed  Google Scholar 

  66. 66.

    Feng X, Gao X, Yao Z, Xu Y. Low apoA-I is associated with insulin resistance in patients with impaired glucose tolerance: a cross-sectional study. Lipids Health Dis. 2017;16(1):69.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Fritzen AM, Domingo-Espin J, Lundsgaard AM, et al. ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Mol Metab. 2020;35:100949.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lehti M, Donelan E, Abplanalp W, al-Massadi O, Habegger KM, Weber J, et al. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation. 2013;128(22):2364–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Tang S, Tabet F, Cochran BJ, Cuesta Torres LF, Wu BJ, Barter PJ, et al. Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci Rep. 2019;9(1):1350.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    McGrath KC, Li X, Twigg SM, Heather AK. Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS One. 2020;15(1):e0226931.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    • Edmunds SJ, Liebana-Garcia R, Nilsson O, et al. ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice. Diabetologia. 2019;62(7):1257–67 First evidence that APOA1 mimetic peptides reduce diabetes-acclerated atherosclerosis by improving β-cell function, increasing insulin sensitivity and decreasing atherosclerotic lesion progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Ding X, Zhang W, Li S, Yang H. The role of cholesterol metabolism in cancer. Am J Cancer Res. 2019;9(2):219–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Zamanian-Daryoush M, DiDonato JA. Apolipoprotein A-I and cancer. Front Pharmacol. 2015;6:265.

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jafri H, Alsheikh-Ali AA, Karas RH. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol. 2010;55(25):2846–54.

    CAS  PubMed  Google Scholar 

  76. 76.

    His M, Zelek L, Deschasaux M, Pouchieu C, Kesse-Guyot E, Hercberg S, et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. Eur J Epidemiol. 2014;29(2):119–32.

    CAS  PubMed  Google Scholar 

  77. 77.

    Borgquist S, Butt T, Almgren P, Shiffman D, Stocks T, Orho-Melander M, et al. Apolipoproteins, lipids and risk of cancer. Int J Cancer. 2016;138(11):2648–56.

    CAS  PubMed  Google Scholar 

  78. 78.

    Wu J, Zhang C, Zhang G, Wang Y, Zhang Z, Su W, et al. Association between pretreatment serum apolipoprotein a1 and prognosis of solid tumors in Chinese population: a systematic review and meta-analysis. Cell Physiol Biochem. 2018;51(2):575–88.

    CAS  PubMed  Google Scholar 

  79. 79.

    Quan Q, Huang Y, Chen Q, Qiu H, Hu Q, Rong Y, et al. Impact of serum apolipoprotein A-I on prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer: a propensity score-matched analysis. Transl Oncol. 2017;10(2):288–94.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Wang XP, Li XH, Zhang L, Lin JH, Huang H, Kang T, et al. High level of serum apolipoprotein A-I is a favorable prognostic factor for overall survival in esophageal squamous cell carcinoma. BMC Cancer. 2016;16:516.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Guo S, He X, Chen Q, Yang G, Yao K, Dong P, et al. The effect of preoperative apolipoprotein A-I on the prognosis of surgical renal cell carcinoma: a retrospective large sample study. Medicine (Baltimore). 2016;95(12):e3147.

    CAS  Google Scholar 

  82. 82.

    Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (apoA-I), immunity, inflammation and cancer. Cancers (Basel) 2019;11(8):1097.

  83. 83.

    Zhang T, Wang Q, Wang Y, Wang J, Su Y, Wang F, et al. AIBP and APOA-I synergistically inhibit intestinal tumor growth and metastasis by promoting cholesterol efflux. J Transl Med. 2019;17(1):161.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Zamanian-Daryoush M, Lindner DJ, Buffa J, Gopalan B, Na J, Hazen SL, et al. Apolipoprotein A-I anti-tumor activity targets cancer cell metabolism. Oncotarget. 2020;11(19):1777–96.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Ruscica M, Botta M, Ferri N, Giorgio E, Macchi C, Franceschini G, et al. High density lipoproteins inhibit oxidative stress-induced prostate cancer cell proliferation. Sci Rep. 2018;8(1):2236.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Gkouskou KK, Ioannou M, Pavlopoulos GA, Georgila K, Siganou A, Nikolaidis G, et al. Apolipoprotein A-I inhibits experimental colitis and colitis-propelled carcinogenesis. Oncogene. 2016;35(19):2496–505.

    CAS  PubMed  Google Scholar 

  87. 87.

    Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, et al. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(46):19997–20002.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Cedo L, Garcia-Leon A, Baila-Rueda L, et al. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer. Sci Rep. 2016;6:36387.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Peng M, Zhang Q, Cheng Y, Fu S, Yang H, Guo X, et al. Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget. 2017;8(59):99693–706.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Gao F, Vasquez SX, Su F, Roberts S, Shah N, Grijalva V, et al. L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways. Integr Biol (Camb). 2011;3(4):479–89.

    CAS  Google Scholar 

  91. 91.

    Gao F, Chattopadhyay A, Navab M, Grijalva V, Su F, Fogelman AM, et al. Apolipoprotein A-I mimetic peptides inhibit expression and activity of hypoxia-inducible factor-1α in human ovarian cancer cell lines and a mouse ovarian cancer model. J Pharmacol Exp Ther. 2012;342(2):255–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Chattopadhyay A, Yang X, Mukherjee P, Sulaiman D, Fogelman HR, Grijalva V, et al. Treating the intestine with oral apoA-I mimetic Tg6F reduces tumor burden in mouse models of metastatic lung cancer. Sci Rep. 2018;8(1):9032.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Zhou AL, Swaminathan SK, Curran GL, Poduslo JF, Lowe VJ, Li L, et al. Apolipoprotein A-I crosses the blood-brain barrier through clathrin-independent and cholesterol-mediated endocytosis. J Pharmacol Exp Ther. 2019;369(3):481–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Merino-Zamorano C, Fernandez-de Retana S, Montanola A, et al. Modulation of amyloid-β1-40 transport by apoA1 and apoJ across an in vitro model of the blood-brain barrier. J Alzheimers Dis. 2016;53(2):677–91.

    CAS  PubMed  Google Scholar 

  95. 95.

    Robert J, Stukas S, Button E, Cheng WH, Lee M, Fan J, et al. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim Biophys Acta. 2016;1862(5):1027–36.

    CAS  PubMed  Google Scholar 

  96. 96.

    Fernandez-de Retana S, Montanola A, Marazuela P, et al. Intravenous treatment with human recombinant apoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2017;60:116–28.

    CAS  PubMed  Google Scholar 

  97. 97.

    Dal Magro R, Simonelli S, Cox A, Formicola B, Corti R, Cassina V, et al. The extent of human apolipoprotein A-I lipidation strongly affects the beta-amyloid efflux across the blood-brain barrier in vitro. Front Neurosci. 2019;13:419.

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Button EB, Boyce GK, Wilkinson A, Stukas S, Hayat A, Fan J, et al. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimers Res Ther. 2019;11(1):44.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, et al. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem. 2010;285(47):36958–68.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kerry-Anne Rye.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cochran, B.J., Ong, KL., Manandhar, B. et al. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 23, 11 (2021). https://doi.org/10.1007/s11883-021-00906-7

Download citation


  • APOA1
  • Atherosclerosis
  • Thrombosis
  • Diabetes
  • Cancer
  • Neurological disorders