Sex-Based Considerations in the Evaluation of Chest Pain and Management of Obstructive Coronary Artery Disease


Purpose of Review

Coronary artery disease (CAD) is a major cause of morbidity and mortality globally and poses a threat to both men and women across their lifespans. There is accumulating evidence to support that CAD may present differently in women and men, ranging from the clinical presentation, diagnosis, and management of the disease to underlying differences in the biological and pathophysiological mechanisms. This has called for an expansion of our conventional tools used in the diagnosis and management of obstructive CAD. Understanding these key sex differences will potentially help tailor our diagnostic and treatment strategies and provide equitable and optimal care to both men and women.

Recent Findings

Numerous studies have consistently shown that women with CAD tend to be older, have a higher burden of co-morbidities, and experience worse outcomes compared to their male counterparts. Women tend to wait longer to seek medical care for cardiovascular symptoms and when they do, they are usually referred late in the disease process and treated less aggressively. Women are significantly underrepresented in most cardiovascular clinical trials, thereby creating an important limitation in the evidence base used for treating cardiovascular disease in women.


In this review, we sought to describe the sex-based considerations in evaluation and management of obstructive CAD, underscore the mechanisms behind these considerations, and help develop a more personalized approach according to current paradigms.

This is a preview of subscription content, log in to check access.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.

    PubMed  Google Scholar 

  2. 2.

    Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37:3232–45.

    PubMed  Google Scholar 

  3. 3.

    QuickStats: Number of Deaths from 10 Leading Causes,* by Sex—National Vital Statistics System, United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:413.

  4. 4.

    Loncar G, Bozic B, Lepic T, et al. Relationship of reduced cerebral blood flow and heart failure severity in elderly males. The aging male: the official journal of the International Society for the Study of the Aging Male. 2011;14:59–65.

    Google Scholar 

  5. 5.

    Jneid H, Fonarow GC, Cannon CP, et al. Sex differences in medical care and early death after acute myocardial infarction. Circulation. 2008;118:2803–10.

    PubMed  Google Scholar 

  6. 6.

    Wenger NK. You’ve come a long way, baby: cardiovascular health and disease in women: problems and prospects. Circulation. 2004;109:558–60.

    PubMed  Google Scholar 

  7. 7.

    Lopez L, Wilper AP, Cervantes MC, Betancourt JR, Green AR. Racial and sex differences in emergency department triage assessment and test ordering for chest pain, 1997–2006. Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17:801–8.

    Google Scholar 

  8. 8.

    Ubrich R, Barthel P, Haller B, et al. Sex differences in long-term mortality among acute myocardial infarction patients: results from the ISAR-RISK and ART studies. PLoS One. 2017;12:e0186783.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Mnatzaganian G, Braitberg G, Hiller JE, Kuhn L, Chapman R. Sex differences in in-hospital mortality following a first acute myocardial infarction: symptomatology, delayed presentation, and hospital setting. BMC Cardiovasc Disord. 2016;16:109.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–75.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    van Diepen S, Bakal JA, Lin M, Kaul P, McAlister FA, Ezekowitz JA. Variation in critical care unit admission rates and outcomes for patients with acute coronary syndromes or heart failure among high- and low-volume cardiac hospitals. J Am Heart Assoc. 2015;4:e001708.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Jennings S, Bennett K, Shelley E, Kearney P, Daly K, Fennell W. Trends in percutaneous coronary intervention and angiography in Ireland, 2004–2011: implications for Ireland and Europe. International journal of cardiology Heart & vessels. 2014;4:35–9.

    CAS  Google Scholar 

  13. 13.

    Lee CMY, Mnatzaganian G, Woodward M, et al. Sex disparities in the management of coronary heart disease in general practices in Australia. Heart. 2019;105:1898–904.

    CAS  PubMed  Google Scholar 

  14. 14.

    Anand SS, Islam S, Rosengren A, et al. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J. 2008;29:932–40.

    PubMed  Google Scholar 

  15. 15.•

    Khan NA, Daskalopoulou SS, Karp I, et al. Sex differences in prodromal symptoms in acute coronary syndrome in patients aged 55 years or younger. Heart. 2017;103:863–9 This study shows that women are more likely than men to experience prodromal symptoms in the days to weeks preceding their presentation as an acute coronary syndrome.

    PubMed  Google Scholar 

  16. 16.

    Radovanovic D, Erne P, Urban P, Bertel O, Rickli H, Gaspoz JM. Gender differences in management and outcomes in patients with acute coronary syndromes: results on 20,290 patients from the AMIS Plus Registry. Heart. 2007;93:1369–75.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    D'Ascenzo F, Gonella A, Quadri G, et al. Comparison of mortality rates in women versus men presenting with ST-segment elevation myocardial infarction. Am J Cardiol. 2011;107:651–4.

    PubMed  Google Scholar 

  18. 18.

    Pendyala LK, Torguson R, Loh JP, et al. Comparison of adverse outcomes after contemporary percutaneous coronary intervention in women versus men with acute coronary syndrome. Am J Cardiol. 2013;111:1092–8.

    PubMed  Google Scholar 

  19. 19.••

    Lichtman JH, Leifheit EC, Safdar B, et al. Sex differences in the presentation and perception of symptoms among young patients with myocardial infarction: evidence from the VIRGO study (Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients). Circulation. 2018;137:781–90 This study highlights that sex differences exist in younger populations with acute myocardial infarction (AMI). Although most men and women presenting with AMI reported chest pain, howeverm women tend to report more additional non-chest pain symptoms compared to their male counterparts.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dey S, Flather MD, Devlin G, et al. Sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: the Global Registry of Acute Coronary Events. Heart. 2009;95:20–6.

    CAS  PubMed  Google Scholar 

  21. 21.

    Wenger NK. Angina in women. Curr Cardiol Rep. 2010;12:307–14.

    PubMed  Google Scholar 

  22. 22.

    Devon HA, Rosenfeld A, Steffen AD, Daya M. Sensitivity, specificity, and sex differences in symptoms reported on the 13-item acute coronary syndrome checklist. J Am Heart Assoc. 2014;3:e000586.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lichtman JH, Leifheit-Limson EC, Watanabe E, et al. Symptom recognition and healthcare experiences of young women with acute myocardial infarction. Circ Cardiovasc Qual Outcomes. 2015;8:S31–8.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. National Registry of Myocardial Infarction 2 Participants. N Engl J Med. 1999;341:217–25.

    CAS  PubMed  Google Scholar 

  25. 25.

    Gupta A, Wang Y, Spertus JA, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014;64:337–45.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Canto JG, Rogers WJ, Goldberg RJ, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. Jama. 2012;307:813–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.••

    Mnatzaganian G, Hiller JE, Braitberg G, et al. Sex disparities in the assessment and outcomes of chest pain presentations in emergency departments. Heart. 2020;106:111–8 This study highlights the existence of sex bias in early management of non-traumatic chest pain in the emergency room.

    PubMed  Google Scholar 

  28. 28.

    Madan N, Lee AK, Matsushita K, et al. Relation of isolated systolic hypertension and pulse pressure to high-sensitivity cardiac troponin-T and N-terminal pro-B-type natriuretic peptide in older adults (from the atherosclerosis risk in communities study). Am J Cardiol. 2019;124:245–52.

    CAS  PubMed  Google Scholar 

  29. 29.

    Peacock WF, Baumann BM, Bruton D, et al. Efficacy of high-sensitivity troponin T in identifying very-low-risk patients with possible acute coronary syndrome. JAMA Cardiol. 2018;3:104–11.

    PubMed  Google Scholar 

  30. 30.

    Martellini A, di Mario C. High-sensitivity troponin allows accurate rapid diagnosis and discharge but it is not a substitute for a comprehensive patient evaluation. Intern Emerg Med. 2019;14:341–3.

    PubMed  Google Scholar 

  31. 31.

    Eggers KM, Jernberg T, Lindhagen L, Lindahl B. High-sensitivity cardiac troponin T levels identify patients with non-ST-segment elevation acute coronary syndrome who benefit from invasive assessment. JACC Cardiovasc Interv. 2018;11:1665–7.

    PubMed  Google Scholar 

  32. 32.

    Daniels LB, Maisel AS. Cardiovascular biomarkers and sex: the case for women. Nat Rev Cardiol. 2015;12:588–96.

    CAS  PubMed  Google Scholar 

  33. 33.

    Gore MO, Seliger SL, Defilippi CR, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63:1441–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lee KK, Ferry AV, Anand A, et al. Sex-specific thresholds of high-sensitivity troponin in patients with suspected acute coronary syndrome. J Am Coll Cardiol. 2019;74:2032–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mieres JH, Gulati M, Bairey Merz N, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation. 2014;130:350–79.

    PubMed  Google Scholar 

  36. 36.

    Mieres JH, Gulati M, Bairey Merz N, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation. 2014;130:350–79.

    PubMed  Google Scholar 

  37. 37.

    Taqueti VR, Dorbala S, Wolinsky D, et al. Myocardial perfusion imaging in women for the evaluation of stable ischemic heart disease-state-of-the-evidence and clinical recommendations. J Nucl Cardiol. 2017;24:1402–26.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol. 2002;40:1531–40.

    PubMed  Google Scholar 

  39. 39.

    Kwok Y, Kim C, Grady D, Segal M, Redberg R. Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol. 1999;83:660–6.

    CAS  PubMed  Google Scholar 

  40. 40.

    Cumming GR, Dufresne C, Kich L, Samm J. Exercise electrocardiogram patterns in normal women. Br Heart J. 1973;35:1055–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Alexander KP, Shaw LJ, Shaw LK, Delong ER, Mark DB, Peterson ED. Value of exercise treadmill testing in women. J Am Coll Cardiol. 1998;32:1657–64.

    CAS  PubMed  Google Scholar 

  42. 42.

    Gulati M, Black HR, Shaw LJ, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353:468–75.

    CAS  PubMed  Google Scholar 

  43. 43.

    Shaw LJ, Peterson ED, Shaw LK, et al. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation. 1998;98:1622–30.

    CAS  PubMed  Google Scholar 

  44. 44.

    Merz CNB, Johnson BD, Braunstein GD, et al. Phytoestrogens and lipoproteins in women. Journal of Clinical Endocrinology & Metabolism. 2006;91:2209–13.

    CAS  Google Scholar 

  45. 45.

    Shaw LJ, Mieres JH, Hendel RH, et al. Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion single photon emission computed tomography in women with suspected coronary artery disease: results from the What Is the Optimal Method for Ischemia Evaluation in Women (WOMEN) trial. Circulation. 2011;124:1239–49.

    PubMed  Google Scholar 

  46. 46.

    Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation. 2003;108:1146–62.

    PubMed  Google Scholar 

  47. 47.

    Marwick TH, Anderson T, Williams MJ, et al. Exercise echocardiography is an accurate and cost-efficient technique for detection of coronary artery disease in women. J Am Coll Cardiol. 1995;26:335–41.

    CAS  PubMed  Google Scholar 

  48. 48.

    Center DE-BP. Noninvasive technologies for the diagnosis of coronary artery disease in women: Effective Health Care Program: Comparative Effectiveness Review Number 58. AHRQ publication No. 12-EHC034-EF. June 2012.

  49. 49.

    Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. J Nucl Cardiol. 2002;9:133–4.

    PubMed  Google Scholar 

  50. 50.

    Schinkel AF, Bax JJ, Geleijnse ML, et al. Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography? Eur Heart J. 2003;24:789–800.

    CAS  PubMed  Google Scholar 

  51. 51.

    Kim C, Kwok YS, Heagerty P, Redberg R. Pharmacologic stress testing for coronary disease diagnosis: a meta-analysis. Am Heart J. 2001;142:934–44.

    CAS  PubMed  Google Scholar 

  52. 52.

    Elhendy A, Geleijnse ML, van Domburg RT, et al. Gender differences in the accuracy of dobutamine stress echocardiography for the diagnosis of coronary artery disease. Am J Cardiol. 1997;80:1414–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Lustgarten DL, Calame S, Crespo EM, Calame J, Lobel R, Spector PS. Electrical resynchronization induced by direct His-bundle pacing. Heart rhythm : the official journal of the Heart Rhythm Society. 2010;7:15–21.

    Google Scholar 

  54. 54.

    Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: evolving knowledge. J Am Coll Cardiol. 2009;54:1561–75.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Einstein AJ, Blankstein R, Andrews H, et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med. 2014;55:1430–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Taqueti VR, Shaw LJ, Cook NR, et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation. 2017;135:566–77.

    PubMed  Google Scholar 

  57. 57.

    Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dolor RJ, Patel MR, Melloni C, et al. AHRQ Comparative Effectiveness Reviews. Noninvasive technologies for the diagnosis of coronary artery disease in women. Rockville (MD): Agency for Healthcare Research and Quality (US), 2012.

  59. 59.

    Shaw LJ, Bairey Merz CN, Pepine CJ, et al. Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47:S4–S20.

    PubMed  Google Scholar 

  60. 60.

    Truong QA, Hayden D, Woodard PK, et al. Sex differences in the effectiveness of early coronary computed tomographic angiography compared with standard emergency department evaluation for acute chest pain: the Rule-Out Myocardial Infarction with Computer-Assisted tomography (ROMICAT)-II trial. Circulation. 2013;127:2494–502.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lubbers M, Dedic A, Coenen A, et al. Calcium imaging and selective computed tomography angiography in comparison to functional testing for suspected coronary artery disease: the multicentre, randomized CRESCENT trial. Eur Heart J. 2016;37:1232–43.

    PubMed  Google Scholar 

  62. 62.

    Pagidipati NJ, Hemal K, Coles A, et al. Sex differences in functional and CT angiography testing in patients with suspected coronary artery disease. J Am Coll Cardiol. 2016;67:2607–16.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hausleiter J, Meyer TS, Martuscelli E, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging. 2012;5:484–93.

    PubMed  Google Scholar 

  64. 64.

    Deseive S, Pugliese F, Meave A, et al. Image quality and radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for coronary CT angiography: the multicenter, randomized PROTECTION IV study. Journal of cardiovascular computed tomography. 2015;9:278–85.

    PubMed  Google Scholar 

  65. 65.

    Deseive S, Chen MY, Korosoglou G, et al. Prospective randomized trial on radiation dose estimates of CT angiography applying iterative image reconstruction: the PROTECTION V study. JACC Cardiovasc Imaging. 2015;8:888–96.

    PubMed  Google Scholar 

  66. 66.

    Min JK, Taylor CA, Achenbach S, et al. Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc Imaging. 2015;8:1209–22.

    PubMed  Google Scholar 

  67. 67.

    Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial. JACC Cardiovasc Imaging. 2017;10:1350–8.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Applegate RJ, Sacrinty MT, Kutcher MA, et al. Vascular complications in women after catheterization and percutaneous coronary intervention 1998-2005. J Invasive Cardiol. 2007;19:369–74.

    PubMed  Google Scholar 

  69. 69.

    Mohamed Osama Mohamed ASV, Tahmeed Contractor, Parikshit S. Sharma, Chun Shing Kwok, Muhammad Rashid, Glen P. Martin, et al. Trends of sex differences in outcomes of cardiac electronic device implantations in the United States. Canadian Journal of Cardiology 2019.

  70. 70.

    Tobin JN, Wassertheil-Smoller S, Wexler JP, et al. Sex bias in considering coronary bypass surgery. Ann Intern Med. 1987;107:19–25.

    CAS  PubMed  Google Scholar 

  71. 71.

    Lauer MS, Pashkow FJ, Snader CE, Harvey SA, Thomas JD, Marwick TH. Gender and referral for coronary angiography after treadmill thallium testing. Am J Cardiol. 1996;78:278–83.

    CAS  PubMed  Google Scholar 

  72. 72.

    Daly CA, Clemens F, Sendon JL, et al. The clinical characteristics and investigations planned in patients with stable angina presenting to cardiologists in Europe: from the euro heart survey of stable angina. Eur Heart J. 2005;26:996–1010.

    PubMed  Google Scholar 

  73. 73.

    Blomkalns AL, Chen AY, Hochman JS, et al. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J Am Coll Cardiol. 2005;45:832–7.

    PubMed  Google Scholar 

  74. 74.

    Bucholz EM, Strait KM, Dreyer RP, et al. Editor’s choice—sex differences in young patients with acute myocardial infarction: a VIRGO study analysis. Eur Heart J Acute Cardiovasc Care. 2017;6:610–22.

    PubMed  Google Scholar 

  75. 75.

    D'Onofrio G, Safdar B, Lichtman JH, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. Circulation. 2015;131:1324–32.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hiteshi AK, Li D, Gao Y, et al. Gender differences in coronary artery diameter are not related to body habitus or left ventricular mass. Clin Cardiol. 2014;37:605–9.

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Smilowitz NR, Sampson BA, Abrecht CR, Siegfried JS, Hochman JS, Reynolds HR. Women have less severe and extensive coronary atherosclerosis in fatal cases of ischemic heart disease: an autopsy study. Am Heart J. 2011;161:681–8.

    PubMed  Google Scholar 

  78. 78.

    Elkoustaf RA, Boden WE. Is there a gender paradox in the early invasive strategy for non ST-segment elevation acute coronary syndromes? Eur Heart J. 2004;25:1559–61.

    PubMed  Google Scholar 

  79. 79.

    Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med. 2001;344:1879–87.

    CAS  PubMed  Google Scholar 

  80. 80.

    Lagerqvist B, Safstrom K, Stahle E, Wallentin L, Swahn E. Is early invasive treatment of unstable coronary artery disease equally effective for both women and men? FRISC II study group investigators. J Am Coll Cardiol. 2001;38:41–8.

    CAS  PubMed  Google Scholar 

  81. 81.

    Lansky AJ, Hochman JS, Ward PA, et al. Percutaneous coronary intervention and adjunctive pharmacotherapy in women: a statement for healthcare professionals from the American Heart Association. Circulation. 2005;111:940–53.

    PubMed  Google Scholar 

  82. 82.

    Lempereur M, Magne J, Cornelis K, et al. Impact of gender difference in hospital outcomes following percutaneous coronary intervention. Results of the Belgian Working Group on Interventional Cardiology (BWGIC) registry. EuroIntervention. 2016;12:e216–23.

    PubMed  Google Scholar 

  83. 83.

    Lee CY, Hairi NN, Wan Ahmad WA, et al. Are there gender differences in coronary artery disease? The Malaysian National Cardiovascular Disease Database—Percutaneous Coronary Intervention (NCVD-PCI) Registry. PLoS One. 2013;8:e72382.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Park DW, Kim YH, Yun SC, et al. Frequency, causes, predictors, and clinical significance of peri-procedural myocardial infarction following percutaneous coronary intervention. Eur Heart J. 2013;34:1662–9.

    CAS  PubMed  Google Scholar 

  85. 85.

    Ahmed B, Dauerman HL. Women, bleeding, and coronary intervention. Circulation. 2013;127:641–9.

    PubMed  Google Scholar 

  86. 86.

    Bertrand OF, Belisle P, Joyal D, et al. Comparison of transradial and femoral approaches for percutaneous coronary interventions: a systematic review and hierarchical Bayesian meta-analysis. Am Heart J. 2012;163:632–48.

    PubMed  Google Scholar 

  87. 87.

    Rao SV, Hess CN, Barham B, et al. A registry-based randomized trial comparing radial and femoral approaches in women undergoing percutaneous coronary intervention: the SAFE-PCI for Women (Study of Access Site for Enhancement of PCI for Women) trial. JACC Cardiovasc Interv. 2014;7:857–67.

    Google Scholar 

  88. 88.

    Li J, Rihal CS, Matsuo Y, et al. Sex-related differences in fractional flow reserve-guided treatment. Circ Cardiovasc Interv. 2013;6:662–70.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Regitz-Zagrosek V, Lehmkuhl E, Hocher B, et al. Gender as a risk factor in young, not in old, women undergoing coronary artery bypass grafting. J Am Coll Cardiol. 2004;44:2413–4.

    PubMed  Google Scholar 

  90. 90.

    Lehmkuhl E, Kendel F, Gelbrich G, et al. Gender-specific predictors of early mortality after coronary artery bypass graft surgery. Clin Res Cardiol. 2012;101:745–51.

    CAS  PubMed  Google Scholar 

  91. 91.

    Nicolini F, Vezzani A, Fortuna D, et al. Gender differences in outcomes following isolated coronary artery bypass grafting: long-term results. J Cardiothorac Surg. 2016;11:144.

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Stone GW, Sabik JF, Serruys PW, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med. 2016;375:2223–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Serruys PW, Cavalcante R, Collet C, et al. Outcomes after coronary stenting or bypass surgery for men and women with unprotected left main disease: the EXCEL trial. JACC Cardiovasc Interv. 2018;11:1234–43.

    PubMed  Google Scholar 

  94. 94.

    Daly C, Clemens F, Lopez Sendon JL, et al. Gender differences in the management and clinical outcome of stable angina. Circulation. 2006;113:490–8.

    PubMed  Google Scholar 

  95. 95.

    Leifheit-Limson EC, Spertus JA, Reid KJ et al. Prevalence of traditional cardiac risk factors and secondary prevention among patients hospitalized for acute myocardial infarction (AMI): variation by age, sex, and race. Journal of women’s health (2002) 2013;22:659–66.

  96. 96.

    Colella TJ, Gravely S, Marzolini S, et al. Sex bias in referral of women to outpatient cardiac rehabilitation? A meta-analysis. Eur J Prev Cardiol. 2015;22:423–41.

    PubMed  Google Scholar 

  97. 97.

    Kaski JC, Maseri A, Vejar M, Crea F, Hackett D. Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol. 1989;14:1456–63.

    CAS  PubMed  Google Scholar 

  98. 98.

    Prinzmetal M, Kennamer R, Merliss R, Wada T, Bor N. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am J Med 1959;27:375–388, Angina pectoris I. A variant form of angina pectoris.

  99. 99.

    Shimokawa H, Nagasawa K, Irie T, et al. Clinical characteristics and long-term prognosis of patients with variant angina. A comparative study between western and Japanese populations. Int J Cardiol. 1988;18:331–49.

    CAS  PubMed  Google Scholar 

  100. 100.

    Aziz A, Hansen HS, Sechtem U, Prescott E, Ong P. Sex-related differences in vasomotor function in patients with angina and unobstructed coronary arteries. J Am Coll Cardiol. 2017;70:2349–58.

    PubMed  Google Scholar 

  101. 101.

    Lee DH, Park TK, Seong CS, et al. Gender differences in long-term clinical outcomes and prognostic factors in patients with vasospastic angina. Int J Cardiol. 2017;249:6–11.

    PubMed  Google Scholar 

  102. 102.

    Yasue H, Omote S, Takizawa A, et al. Comparison of coronary arteriographic findings during angina pectoris associated with S-T elevation or depression. Am J Cardiol. 1981;47:539–46.

    CAS  PubMed  Google Scholar 

  103. 103.

    Beltrame JF, Crea F, Kaski JC, et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2017;38:2565–8.

    PubMed  Google Scholar 

  104. 104.

    Sueda S, Kohno H, Ochi T, Uraoka T, Tsunemitsu K. Overview of the pharmacological spasm provocation test: comparisons between acetylcholine and ergonovine. J Cardiol. 2017;69:57–65.

    PubMed  Google Scholar 

  105. 105.

    Myerburg RJ, Kessler KM, Mallon SM, et al. Life-threatening ventricular arrhythmias in patients with silent myocardial ischemia due to coronary-artery spasm. N Engl J Med. 1992;326:1451–5.

    CAS  PubMed  Google Scholar 

  106. 106.

    Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y. Coronary artery spasm—clinical features, diagnosis, pathogenesis, and treatment. J Cardiol. 2008;51:2–17.

    PubMed  Google Scholar 

  107. 107.

    Demir OM, Hudson J, Ghonim S, Wallis W. Recurrent coronary spasm necessitating primary percutaneous coronary intervention. British journal of hospital medicine (London, England : 2005) 2016;77:112–3.

  108. 108.

    Pretty HC. Dissecting aneurysm of coronary artery in a woman aged 42: rupture. BmJ. 1931;1:667.

    Google Scholar 

  109. 109.

    Nishiguchi T, Tanaka A, Ozaki Y, et al. Prevalence of spontaneous coronary artery dissection in patients with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2016;5:263–70.

    PubMed  Google Scholar 

  110. 110.

    Lie JT, Berg KK. Isolated fibromuscular dysplasia of the coronary arteries with spontaneous dissection and myocardial infarction. Hum Pathol. 1987;18:654–6.

    CAS  PubMed  Google Scholar 

  111. 111.

    Saw J. Pregnancy-associated spontaneous coronary artery dissection represents an exceptionally high-risk spontaneous coronary artery dissection cohort. Circ Cardiovasc Interv. 2017;10.

  112. 112.

    Saw J. Coronary angiogram classification of spontaneous coronary artery dissection. Catheter Cardiovasc Interv. 2014;84:1115–22.

    PubMed  Google Scholar 

  113. 113.

    Alfonso F, Paulo M, Gonzalo N, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59:1073–9.

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Annabelle Santos Volgman.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Dr. Madan has nothing to disclose.

Dr. Gajo has nothing to disclose.

Dr. Sanghani has nothing to disclose.

Dr. Annabelle S. Volgman: Novartis – research study; Apple Inc. stock ownership.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Women and Ischemic Heart Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madan, N., Gajo, E., Sanghani, R.M. et al. Sex-Based Considerations in the Evaluation of Chest Pain and Management of Obstructive Coronary Artery Disease. Curr Atheroscler Rep 22, 39 (2020).

Download citation


  • Coronary artery disease
  • Women
  • Sex differences
  • Chest pain