Skip to main content

Advertisement

Log in

Advances in Coronary No-Reflow Phenomenon—a Contemporary Review

  • Women and Ischemic Heart Disease (A. Maran, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Coronary artery no-reflow phenomenon is an incidental outcome of percutaneous coronary intervention in patients presenting with acute myocardial infarction. Despite advances in pharmacologic and non-pharmacologic therapies, coronary no-reflow phenomenon occurs more commonly than desired. It often results in poor clinical outcomes and remains as a relevant consideration in the cardiac catheterization laboratory. In this systematic review, we have sought to discuss the topic in detail, and to relay the most recent discoveries and data on management of this condition.

Recent Findings

We discuss several pharmacologic and non-pharmacologic treatments used in the prevention and management of coronary no-reflow and microvascular obstruction. Covered topics include the understanding of pharmacologic mechanisms of current and future agents, and recent discoveries that may result in the development of future treatment options.

Summary

We conclude that the pathophysiology of coronary no-reflow phenomenon and microvascular obstruction still remains incompletely understood, although several plausible theories have led to the current standard of care for its management. We also conclude that coronary no-reflow phenomenon and microvascular obstruction must be recognized as a multifactorial condition that has certain predispositions and characteristics, therefore its prevention and treatment must begin pre-procedurally and be multi-faceted including certain medications and operator techniques in the cardiac catheterization laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Morishima I, Sone T, Mokuno S, Taga S, Shimauchi A, Oki Y, et al. Clinical significance of no-reflow phenomenon observed on angiography after successful treatment of acute myocardial infarction with percutaneous transluminal coronary angioplasty. Am Heart J. 1995;130:239–43.

    Article  PubMed  CAS  Google Scholar 

  2. • Bouleti C, Mewton N, Germain S. The no-reflow phenomenon: state of the art. Arch Cardiovasc Dis. 2015;108:661–74. A review on coronary no reflow phenomenon and the current standard of care for treatment of

    Article  PubMed  Google Scholar 

  3. Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the “no reflow” phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985;5:593–8.

    Article  PubMed  CAS  Google Scholar 

  4. Rezkalla SH, Dharmashankar KC, Abdalrahman IB, Kloner RA. No-reflow phenomenon following percutaneous coronary intervention for acute myocardial infarction: incidence, outcome, and effect of pharmacologic therapy. J Interv Cardiol. 2010;23:429–36.

    Article  PubMed  Google Scholar 

  5. Kloner RA, Ganote CE, Jennings RB. The “no- reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fugit MD, Rubal BJ, Donovan DJ. Effects of intracoronary nicardipine, diltiazem, and verapamil on coronary blood flow. J Invasive Cardiol. 2000;12:80–5.

    PubMed  CAS  Google Scholar 

  7. Rezkalla SH, Stankowski RV, et al. Management of no-reflow phenomenon in the catheterization laboratory. J Am Coll Cardiol. 2017;10:215–23.

    Article  Google Scholar 

  8. Gibson CM, Murphy SA, Rizzo MJ, Ryan KA, Marble SJ, McCabe CH, et al. Thrombolysis in myocardial infarction (TIMI) study group. Relationship between TIMI frame count and clinical outcomes after thrombolytic administration. Circulation. 1999;99:1945–50.

    Article  PubMed  CAS  Google Scholar 

  9. Gibson CM, Dotani MI, Murphy SA, Marble SJ, Dauterman KW, Michaels AD, et al. Correlates of coronary blood flow before and after percutaneous coronary intervention and their relationship to angiographic and clinical outcomes in the RESTORE trial: randomized efficacy study of Tirofiban for outcomes and restenosis. Am Heart J. 2002;144:130–5.

    Article  PubMed  Google Scholar 

  10. Durante A, Camici PG. Novel insights into an “old” phenomenon: the no reflow. Int J Cardiol. 2015;187:273–80.

    Article  PubMed  Google Scholar 

  11. Cuculi F, De Maria GL, Meier P, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1894–904.

    Article  PubMed  Google Scholar 

  12. Amano H, Ikeda T, Toda M, Okubo R, Yabe T, Watanabe I, et al. Plaque composition and no-reflow phenomenon during percutaneous coronary intervention of low-echoic structures in grayscale intravascular ultrasound. Int Heart J. 2016;57:285–91.

    Article  PubMed  CAS  Google Scholar 

  13. •• Horvath M, Hajek P, Stechovsky C, et al. The role of near-infrared spectroscopy in the detection of vulnerable atherosclerotic plaques. Arch Med Sci. 2016;12:1308–16. A study on imaging modalities that may be used to predict risk of coronary no-reflow, suggesting that there is much more to be understood about plaque morphology and microvascular obstruction pathophysiology.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maini A, Buyantseva L, Maini B. In vivo lipid core plaque modification with percutaneous coronary revascularization: a near-infrared spectroscopy study. J Invasive Cardiol. 2013;25:293–5.

    PubMed  Google Scholar 

  15. Soeda T, Higuma T, Abe N, et al. Morphological predictors for no reflow phenomenon after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction caused by plaque rupture. Eur Heart J Cardiovasc Imaging. 2016;18:103–10.

    Article  PubMed  Google Scholar 

  16. Wu K, Zerhouni E, Judd R, et al. Prognostic significance of microvascular obstruction by MRI in patients with acute myocardial infarction. Circulation. 1998;97:765–72.

    Article  PubMed  CAS  Google Scholar 

  17. •• Durante A, Laricchia A, Benedetti G, et al. Identification of high-risk patients after ST-elevation myocardial infarction: comparison between angiographic and magnetic resonance parameters. Circ Cardiovasc Imaging. 2017;10:e005841. A study on cardiac imaging post PCI supporting the theory of continue microvascular obstruction although coronary no-reflow may resolve angiographically.

    Article  PubMed  Google Scholar 

  18. Guo F, Chai W, Liu M, et al. The relationship between MMP-9 and infarct related artery reflow in acute STEMI patients. J Diabetes Metab. 2017;8:749.

    Article  Google Scholar 

  19. Zalewski J, Undas A, Godlewski J, Stepien E, Zmudka K. No-reflow phenomenon after acute myocardial infarction is associated with reduced clot permeability and susceptibility to lysis. Arterioscler Thromb Vasc Biol. 2007;27:2258–65.

    Article  PubMed  CAS  Google Scholar 

  20. Bolayir HA, Gunes H, Kivrak T, et al. The role of SCUBE1 in the pathogenesis of no-reflow phenomenon presenting with ST segment elevation myocardial infarction. Anatol J Cardiol. 2017;18:122–7.

    PubMed  PubMed Central  Google Scholar 

  21. Niccoli G, Celestini A, Calvieri C. Patients with microvascular obstruction after primary percutaneous coronary intervention show a gp91phox (NOX2) mediated persistent oxidative stress after reperfusion. Eur Heart J Acute Cardiovasc Care. 2013;2:379–88.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Niccoli G, Kharbanda RK, Crea F, Banning AP. No-reflow: again prevention is better than treatment. Eur Heart J. 2010;20:2449–55.

    Article  Google Scholar 

  23. Ndrepepa G, Tiroch K, Keta D, Fusaro M, Seyfarth M, Pache J, et al. Predictive factors and impact of no reflow after primary percutaneous coronary intervention in patients with acute myocardial infarction. Circ Cardiovasc Interv. 2010;3:27–33.

    Article  PubMed  Google Scholar 

  24. Iwakura K, Ito H, Ikushima M, Kawano S, Okamura A, Asano K, et al. Association between hyperglycemia and the no-reflow phenomenon in patients with acute myocardial infarction. J Am Coll Cardiol. 2003;41:1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Niccoli G, Cosentino N, Spaziani C, Minelli S, Fracassi F, Crea F. New strategies for the management of no-reflow after primary percutaneous coronary intervention. Expert Rev Cardiovasc Ther. 2011;9:615–30.

    Article  PubMed  Google Scholar 

  26. Li XD, Yang YJ, Hao YC, Yang Y, Zhao JL, Dou KF, et al. Effects of pre-procedural statin therapy on myocardial no- reflow following percutaneous coronary intervention: a meta analysis. Chin Med J. 2013;126:1755–60.

    PubMed  Google Scholar 

  27. Pantsios C, Kapelios C, Vakrou S, Diakos N, Pozios I, Kontogiannis C, et al. Effect of elevated reperfusion pressure on “no reflow” area and infarct size in a porcine model of ischemia–reperfusion. J Cardiovasc Pharmacol Ther. 2016;21:405–11.

    Article  PubMed  Google Scholar 

  28. Hu T, Wang HC, Wang RT, Lv AL, Luan RH, Li CX, et al. Effect of chronic pretreatment of angiotensin-converting receptor blocker on no-reflow phenomenon in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Cardiovasc Ther. 2013;31:e7–e11.

    Article  PubMed  CAS  Google Scholar 

  29. Al-Jabari AM, Elserafy AS, Abuemara HZ. Effect of chronic pretreatment with beta-blockers on no-reflow phenomenon in diabetic patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Egyptian Heart J. 2017;69:171–5.

    Article  Google Scholar 

  30. Svilaas T, Vlaar PJ, van der Horst IC, Diercks GFH, de Smet BJGL, van den Heuvel AFM, et al. Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med. 2008;358:557–67.

    Article  PubMed  CAS  Google Scholar 

  31. De Vita M, Burzotta F, Biondi-Zoccai GG, et al. Individual patient-data meta-analysis comparing clinical outcome in patients with ST-elevation myocardial infarction treated with percutaneous coronary intervention with or without prior thrombectomy. ATTEMPT study: a pooled analysis of trials on ThrombEctomy in acute myocardial infarction based on individual PatienT data. Vasc Health Risk Manag. 2009;5:243–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mongeon FP, Bélisle P, Joseph L, et al. Adjunctive thrombectomy for acute myocardial infarction: a Bayesian meta-analysis. Circ Cardiovasc Interv. 2010;3:6–16.

    Article  PubMed  Google Scholar 

  33. Mancini JG, Filion KB, Windle SB, Habib B, Eisenberg MJ. Meta-analysis of the long-term effect of routine aspiration thrombectomy in patients undergoing primary percutaneous coronary intervention. Am J Cardiol. 2016;118:23–31.

    Article  PubMed  Google Scholar 

  34. Ge J, Schafer A, Ertl G, Nordbeck P. Thrombus aspiration for ST-segment-elevation myocardial infarction in modern era: still an issue of debate? Circ Cardiovasc Interv. 2017;10:e005739.

    Article  PubMed  Google Scholar 

  35. Awadalla H, Salloum J, Moustapha A, Assali A, Sdringola S, Fujise K, et al. Rheolytic thrombectomy does not prevent slow-, no-reflow during percutaneous coronary intervention in acute myocardial infarction. Int J Angiol. 2003;12:183–7.

    Article  Google Scholar 

  36. Zhou H, He XY, Zhuang SW, Wang J, Lai Y, Qi WG, et al. Clinical and procedural predictors of no-reflow in patients with acute myocardial infarction after primary PCI. World J Emerg Med. 2014;5:96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dash D. Complications of coronary intervention: device embolization, no-reflow and air embolism. Heart Asia. 2013;5:54–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qiao J, Pan L, Zhang B, Wang J, Zhao Y, Yang R, et al. Deferred versus immediate stenting in patients with ST-segment elevation myocardial infarction: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6:e004838.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ovize M, Baxter GF, Di Lisa F, et al. Post- conditioning and protection from reperfusion injury: where do we stand? Position paper from the working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010;87:406–23.

    Article  PubMed  CAS  Google Scholar 

  40. Mewton N, Thibault H, Roubille F, Lairez O, Rioufol G, Sportouch C, et al. Postconditioning attenuates no-reflow in STEMI patients. Basic Res Cardiol. 2013;108:383.

    Article  PubMed  Google Scholar 

  41. Thibault H, Piot C, Staat P. Long-term benefit of postconditioning. Circulation. 2008;117:1037–44.

    Article  PubMed  CAS  Google Scholar 

  42. Freixa X, Bellera N, Ortiz-Pérez JT, et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percuta- neous coronary intervention. Eur Heart J. 2012;33:103–12.

    Article  PubMed  Google Scholar 

  43. Hahn JY, Song YB, Kim EK, Yu CW, Bae JW, Chung WY, et al. Ischemic postconditioning during primary percutaneous coronary intervention: the effects of post- conditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation. 2013;128:1889–96.

    Article  PubMed  CAS  Google Scholar 

  44. Kern MJ, Augmentation of coronary blood flow by IABP in patients after coronary angioplasty. Circulation 1993.

  45. Pierrakos CN, Bonios MJ, Drakos SG, Charitos EI, Tsolakis EJ, Ntalianis A, et al. Mechanical assistance by IABP counterpulsation during reperfusion increases coronary blood flow and mitigates the no-reflow phenomenon: an experimental study. Artif Organs. 2011;35:867–74.

    Article  PubMed  Google Scholar 

  46. Amado LC, Kraitchman DL, Gerber BL, Castillo E, Boston RC, Grayzel J, et al. Reduction of “no-reflow” phenomenon by intra-aortic balloon counterpulsation in a randomized magnetic resonance imaging experimental study. J Am Coll Cardiol. 2004;43:1291–8.

    Article  PubMed  Google Scholar 

  47. Maekawa K, Kawamoto K, Fuke S, Yoshioka R, Saito H, Sato T, et al. Effects of intraaortic balloon pumping on the angiographic no-reflow phenomenon after percutaneous coronary intervention in patients with anterior myocardial infarction. Circ J. 2006;70:37–43.

    Article  PubMed  Google Scholar 

  48. Hale S, Herring MJ, Kloner RA. Delayed treatment with hypothermia protects against the no-reflow phenomenon despite failure to reduce infarct size. J Am Heart Assoc. 2013;2:e004234.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hale SL, Dae MW, Kloner RA. Hypothermia during reperfusion limits no-reflow injury in a rabbit model of acute myocardial infarction. Cardiovasc Res. 2003;59:715–22.

    Article  PubMed  CAS  Google Scholar 

  50. Kuliczkowski W, Gasior M, Pres D, Kaczmarski J, Laszowska A, Szewczyk M, et al. Aspirin resistance: impact on no-reflow, platelet and inflammatory biomarkers in diabetics after ST-segment elevation myocardial infarction. Cardiology. 2015;131:41–50.

    Article  PubMed  CAS  Google Scholar 

  51. Niccoli G, Spaziani C, Marino M, Pontecorvo ML, Cosentino N, Bacà M, et al. Effect of chronic aspirin therapy on angiographic thrombus burden in patients admitted for a first ST-elevation myocardial infarction. Am J Cardiol. 2010;105:587–91.

    Article  PubMed  CAS  Google Scholar 

  52. Mangiacapra F, Muller O, Ntalianis A. Comparison of 600 versus 300-mg Clopidogrel loading dose in patients with ST-segment elevation myocardial infarction undergoing primary coronary angioplasty. Am J Cardiol. 2010;106:1208–11.

    Article  PubMed  CAS  Google Scholar 

  53. Headrick JP, Lasley RD. Adenosine receptors and reperfusion injury of the heart. Handb Exp Pharmacol. 2009;193:189–214.

    Article  CAS  Google Scholar 

  54. Van Giezen JJ, Sidaway J, Glaves P, et al. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther. 2012;17:164–72.

    Article  PubMed  CAS  Google Scholar 

  55. Mustafa SJ, Morrison RR, Teng B, Pelleg A. Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol. 2009;193:161–88.

    Article  CAS  Google Scholar 

  56. Angiolillo DJ, Capranzano P. Pharmacology of emerging novel platelet inhibitors. Am Heart J. 2008;156:S10–5.

    Article  PubMed  CAS  Google Scholar 

  57. Armstrong D, Summers C, Ewart L, Nylander S, Sidaway JE, van Giezen JJJ. Characterization of the adenosine pharmacology of ticagrelor reveals therapeutically relevant inhibition of equilibrative nucleoside transporter 1. J Cardiovasc Pharmacol Ther. 2014;19:209–19.

    Article  PubMed  CAS  Google Scholar 

  58. Gibson CM, de Lemos JA, Murphy SA, Marble SJ, McCabe C, Cannon CP, et al. Combination therapy with abciximab reduces angiographically evident thrombus in acute myocardial infarction: a TIMI 14 substudy. Circulation. 2001;103:2550–4.

    Article  PubMed  CAS  Google Scholar 

  59. Deibele AJ, Jennings LK, Tcheng JE, Neva C, Earhart AD, Gibson CM. Intracoronary eptifibatide bolus administration during percutaneous coronary revascularization for acute coronary syndromes with evaluation of platelet glycoprotein IIb/IIIa receptor occupancy and platelet function: the intracoronary Eptifibatide (ICE) trial. Circulation. 2010;121:784–91.

    Article  PubMed  CAS  Google Scholar 

  60. Petronio AS, De Carlo M, Ciabatti N, et al. Left ventricular remodeling after primary coronary angioplasty in patients treated with abciximab or intracoronary adenosine. Am Heart J. 2005;150:1015.

    Article  PubMed  CAS  Google Scholar 

  61. Thiele H, Schindler K, Friedenberger J, Eitel I, Fürnau G, Grebe E, et al. Intracoronary compared with intravenous bolus abciximab application in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: the randomized Leipzig immediate percutaneous coronary intervention abciximab IV versus IC in ST-elevation myocardial infarction trial. Circulation. 2008;118:49–57.

    Article  PubMed  CAS  Google Scholar 

  62. Gu YL, Kampinga MA, Wieringa WG, Fokkema ML, Nijsten MW, Hillege HL, et al. Intracoronary versus intravenous administration of abciximab in patients with ST- segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with thrombus aspiration: the comparison of intracoronary versus intra- venous abciximab administration during emergency reperfusion of ST-segment elevation myocardial infarction (CICERO) trial. Circulation. 2010;122:2709–17.

    Article  PubMed  CAS  Google Scholar 

  63. Forman MB, Jackson EK. Importance of tissue perfusion in ST segment elevation myocardial infarction patients under- going reperfusion strategies: role of adenosine. Clin Cardiol. 2007;30:583–5.

    Article  PubMed  Google Scholar 

  64. Forman MB, Stone GW, Jackson EK. Role of adenosine as adjunctive therapy in acute myocardial infarction. Cardiovasc Drug Rev. 2006;24:116–47.

    Article  PubMed  CAS  Google Scholar 

  65. Forman MB, Hou D, Jackson EK. Treating acute “no-reflow” with intracoronary adenosine in 4 patients during percutaneous coronary intervention. Tex Heart Inst J. 2008;35:439–46.

    PubMed  PubMed Central  Google Scholar 

  66. Assali AR, Sdringola S, Ghani M, Denkats AE, Yepes A, Hanna GP, et al. Intracoronary adenosine administered during percutaneous intervention in acute myocardial infarction and reduction in the incidence of “no reflow” phenomenon. Catheter Cardiovasc Interv. 2000;51:27–32.

    Article  PubMed  CAS  Google Scholar 

  67. Fischell TA, Carter AJ, Foster MT, Hempsall K, DeVries J, Kim DH, et al. Reversal of “no reflow” during vein graft stenting using high velocity boluses of intracoronary adenosine. Catheter Cardiovasc Diagn. 1998;45:360–5.

    Article  CAS  Google Scholar 

  68. Sdringola S, Assali A, Ghani M, Yepes A, Rosales O, Schroth GW, et al. Adenosine use during aortocoronary vein graft interventions reverses but does not prevent the slow-no reflow phenomenon. Catheter Cardiovasc Interv. 2000;51:394–9.

    Article  PubMed  CAS  Google Scholar 

  69. Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of Adeno- sine (AMISTAD) trial. J Am Coll Cardiol. 1999;34:1711–20.

    Article  PubMed  CAS  Google Scholar 

  70. Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW, Investigators AMISTAD-II. A randomized, double-blinded, placebo- controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005;45:1775–80.

    Article  PubMed  CAS  Google Scholar 

  71. Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006;27:2400–5.

    Article  PubMed  CAS  Google Scholar 

  72. Yetgin T, Uitterdijk A, Te Lintel HM, et al. Limitation of infarct size and no-reflow by intracoronary adenosine depends critically on dose and duration. JACC Cardiovasc Interv. 2015;8:1990–9.

    Article  PubMed  Google Scholar 

  73. Nazir SA, Khan JN, Mahmoud IZ, et al. The REFLO-STEMI trial comparing intracoronary adenosine, sodium nitroprusside and standard therapy for the attenuation of infarct size and microvascular obstruction during primary percutaneous coronary intervention: study protocol for a randomised controlled trial. Trials. 2014;15:371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Polimeni A, De Rosa S, Sabatino J, et al. Impact of intracoronary adenosine administration during primary PCI: a meta-analysis. Int J Cardiol. 2016;203:1032–41.

    Article  PubMed  Google Scholar 

  75. Su Q, Nyi TS, Li L. Adenosine and verapamil for no-reflow during primary percutaneous coronary intervention in people with acute myocardial infarction. Cochrane Database Syst Rev. 2015;5:CD009503.

    Google Scholar 

  76. Parham WA, Bouhasin A, Ciaramita JP, Khoukaz S, Herrmann SC, Kern MJ. Coronary hyperemic dose responses of intracoronary sodium nitroprusside. Circulation. 2004;109:1236–43.

    Article  PubMed  CAS  Google Scholar 

  77. Parikh KH, Chag MC, Shah KJ, Shah UG, Baxi HA, Chandarana AH, et al. Intracoronary boluses of adenosine and sodium nitroprusside in combination reverses slow/no- reflow during angioplasty: a clinical scenario of ischemic preconditioning. Can J Physiol Pharmacol. 2007;85:476–82.

    Article  PubMed  CAS  Google Scholar 

  78. Su Q, Li L, Naing KA, Sun Y. Safety and effectiveness of nitroprusside in preventing no-reflow during percutaneous coronary intervention: a systematic review. Cell Biochem Biophys. 2014;68:201–6.

    Article  PubMed  CAS  Google Scholar 

  79. Zhao S, Qi G, Tian W, Chen L, Sun Y. Effect of intracoronary nitroprusside in preventing no reflow phenomenon during primary percutaneous coronary intervention: a meta-analysis. J Interv Cardiol. 2014;27:356–64.

    Article  PubMed  Google Scholar 

  80. Wang L, Cheng Z, Gu Y, Peng D. Short-term effects of verapamil and diltiazem in the treatment of no reflow phenomenon: a meta-analysis of randomized controlled trials. Biomed Res Int. 2015;2015:382086.

    PubMed  PubMed Central  Google Scholar 

  81. Huang RI, Patel P, Walinsky P, et al. Efficacy of intracoronary nicardipine in the treatment of no-reflow during percutaneous coronary intervention. Catheter Cardiovasc Interv. 2006;68:671–6.

    Article  PubMed  Google Scholar 

  82. Lambert CR, Pepine CJ. Effects of intravenous and intracoronary nicardipine. Am J Cardiol. 1989;64:8H–15H.

    Article  PubMed  CAS  Google Scholar 

  83. Falase B, Easaw J, Youhana A. The role of nicorandil in the treatment of myocardial ischaemia. Expert Opin Pharmacother. 2001;2:845–56.

    Article  PubMed  CAS  Google Scholar 

  84. Tanaka H, Okazaki K, Shigenobu K. Cardioprotective effects of NIP-121, a novel ATP-sensitive potassium channel opener, during ischemia and reperfusion in coronary perfused guinea pig myocardium. J Cardiovasc Pharmacol. 1996;27:695–701.

    Article  PubMed  CAS  Google Scholar 

  85. Ishii H, Ichimiya S, Kanashiro M, Amano T, Imai K, Murohara T, et al. Impact of a single intravenous administration of nicorandil before reperfusion in patients with ST-segment-elevation myocardial infarction. Circulation. 2005;112:1284–8.

    Article  PubMed  CAS  Google Scholar 

  86. Ito H, Taniyama Y, Iwakura K, Nishikawa N, Masuyama T, Kuzuya T, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol. 1999;33:654–60.

    Article  PubMed  CAS  Google Scholar 

  87. Ono H, Osanai T, Ishizaka H, et al. Nicorandil improves cardiac function and clinical outcome in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: role of inhibitory effect on reactive oxygen species formation. Am Heart J. 2004;148:E15.

    Article  PubMed  CAS  Google Scholar 

  88. Iwakura J, Ito H, Okamura A, et al. Nicorandil treatment in patients with acute myocardial infarction: a meta-analysis. Circ J. 2009;73:925–31.

    Article  PubMed  CAS  Google Scholar 

  89. Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KHH, Halestrap AP. Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol. 2003;549:513–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kucukcelebi A, Ozcan M. The beneficial effect of cyclosporine-A on the no-reflow phenomenon in rat skin island flaps. Br J Plast Surg. 1992;45:512–4.

    Article  PubMed  CAS  Google Scholar 

  91. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.

    Article  PubMed  CAS  Google Scholar 

  92. Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021–31.

    Article  PubMed  CAS  Google Scholar 

  93. Atar D, Petzelbauer P, Schwitter J, Huber K, Rensing B, Kasprzak JD, et al. For the F.I.R.E. Investigators. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the Prevention of Myocardial Reperfusion Injury) trial. J Am Coll Cardiol. 2009;53:720–9.

    Article  PubMed  CAS  Google Scholar 

  94. Armstrong PW, Granger CB, Adams PX, et al. APEX AMI investigators. Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial. JAMA. 2007;297:43–51.

    Article  PubMed  CAS  Google Scholar 

  95. Hale SL, Kloner RA. Dabigatran treatment: effects on infarct size and the no-reflow phenomenon in a model of acute myocardial ischemia/reperfusion. J Thromb Thrombolysis. 2015;39:50–4.

    Article  PubMed  CAS  Google Scholar 

  96. Chen WR, Tian F, Chen YD, Wang J, Yang JJ, Wang ZF, et al. Effects of liraglutide on no-reflow in patients with acute ST-segment elevation myocardial infarction. Int J Cardiol. 2016;208:109–14.

    Article  PubMed  Google Scholar 

  97. Parsa CJ, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest. 2003;112:999–1007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Niccoli G, Andreotti F, Marzo F, Cecchetti S, Santucci E, D’Amario D, et al. Endogneous serum erythropoietin and no-reflow in patients with ST-elevation myocardial infarction. Eur J Clin Investig. 2011;41:1210–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Karimianpour.

Ethics declarations

Conflict of Interest

Ahmadreza Karimianpour and Anbukarasi Maran declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Women and Ischemic Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimianpour, A., Maran, A. Advances in Coronary No-Reflow Phenomenon—a Contemporary Review. Curr Atheroscler Rep 20, 44 (2018). https://doi.org/10.1007/s11883-018-0747-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-018-0747-5

Keywords

Navigation