The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis

  • Angela Pirillo
  • Fabrizia Bonacina
  • Giuseppe Danilo Norata
  • Alberico Luigi Catapano
Evidence-Based Medicine (L. Roever, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Evidence Based Medicine

Abstract

Purpose of Review

Atherosclerosis is an inflammatory disorder of the arterial wall, in which several players contribute to the onset and progression of the disease. Besides the well-established role of lipids, specifically cholesterol, and immune cell activation, new insights on the molecular mechanisms underlying the atherogenic process have emerged.

Recent Findings

Meta-inflammation, a condition of low-grade immune response caused by metabolic dysregulation, immunological memory of innate immune cells (referred to as “trained immunity”), cholesterol homeostasis in dendritic cells, and immunometabolism, i.e., the interplay between immunological and metabolic processes, have all emerged as new actors during atherogenesis. These observations reinforced the interest in directly targeting inflammation to reduce cardiovascular disease.

Summary

The novel acquisitions in pathophysiology of atherosclerosis reinforce the tight link between lipids, inflammation, and immune response, and support the benefit of targeting LDL-C as well as inflammation to decrease the CVD burden. How this will translate into the clinic will depend on the balance between costs (monoclonal antibodies either to PCSK9 or to IL-1ß), side effects (increased incidence of death due to infections for anti-IL-1ß antibody), and the benefits for patients at high CVD risk.

Keywords

Atherosclerosis Cholesterol Inflammation Immune response 

Notes

Compliance with Ethical Standards

Conflict of Interest

Angela Pirillo and Fabrizia Bonacina declare no conflict of interest.

Giuseppe Danilo Norata reports grants from Pfizer, personal fees from Sanofi, Aegerion, Amgen, Alnylam, Novartis, outside the submitted work. Alberico Luigi Catapano reports grants from Pfizer, Sanofi, Regeneron, Merck, Mediolanum, SigmaTau, Menarini, kowa, Recordati, Eli Lilly, and personal fees from Astrazeneca, Genzyme, Bayer SigmaTau, Menarini, kowa, Eli Lilly, Recordati, Pfizer, Sanofi, Mediolanum, Pfizer, Merck, Sanofi, Aegerion, and Amgen, outside the submitted work. The work of the authors is supported by: Fondazione Cariplo 2015-0524 and 2015-0564 (ALC), and 2016-0852 (GDN); H2020 REPROGRAM PHC-03-2015/667837-2 (ALC); Telethon Foundation (GGP13002) (GDN), Ministero della Salute GR-2011-02346974 (GDN) and GR-2013-02355011 (FB); Aspire Cardiovascular Grant 2016-WI218287 (GDN).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47(4):621–34.  https://doi.org/10.1016/j.immuni.2017.09.008.CrossRefPubMedGoogle Scholar
  2. 2.
    Lemaire-Ewing S, Lagrost L, Neel D. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis. 2012;221(2):303–10.CrossRefPubMedGoogle Scholar
  3. 3.
    Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc Res. 2014;103(3):372–83.  https://doi.org/10.1093/cvr/cvu150.CrossRefPubMedGoogle Scholar
  4. 4.
    Norata GD, Pirillo A, Ammirati E, Catapano AL. Emerging role of high density lipoproteins as a player in the immune system. Atherosclerosis. 2011;220(1):11–21.  https://doi.org/10.1016/j.atherosclerosis.2011.06.045.CrossRefPubMedGoogle Scholar
  5. 5.
    Norata GD, Pirillo A, Catapano AL. HDLs, immunity, and atherosclerosis. Curr Opin Lipidol. 2011;22(5):410–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149(1):13–24.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010;11(10):688–99.  https://doi.org/10.1038/nrm2977.CrossRefPubMedGoogle Scholar
  8. 8.
    Jury EC, Flores-Borja F, Kalsi HS, et al. Abnormal CTLA-4 function in T cells from patients with systemic lupus erythematosus. Eur J Immunol. 2010;40(2):569–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Eren E, Yates J, Cwynarski K, et al. Location of major histocompatibility complex class II molecules in rafts on dendritic cells enhances the efficiency of T-cell activation and proliferation. Scand J Immunol. 2006;63(1):7–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Anderson HA, Hiltbold EM, Roche PA. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nat Immunol. 2000;1(2):156–62.  https://doi.org/10.1038/77842.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, et al. Macrophage ABCA1 reduces MyD88-dependent toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51(11):3196–206.  https://doi.org/10.1194/jlr.M006486.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ito A, Hong C, Oka K, et al. Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease. Immunity. 2016;45(6):1311–26.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Foster GA, Xu L, Chidambaram AA, Soderberg SR, Armstrong EJ, Wu H, et al. CD11c/CD18 signals very late antigen-4 activation to initiate foamy monocyte recruitment during the onset of hypercholesterolemia. J Immunol. 2015;195(11):5380–92.  https://doi.org/10.4049/jimmunol.1501077.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu H, Gower RM, Wang H, Perrard XYD, Ma R, Bullard DC, et al. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation. 2009;119(20):2708–17.  https://doi.org/10.1161/CIRCULATIONAHA.108.823740.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Xu L, Dai Perrard X, Perrard JL, Yang D, Xiao X, Teng BB, et al. Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2015;35(8):1787–97.  https://doi.org/10.1161/ATVBAHA.115.305609.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khan IM, Pokharel Y, Dadu RT, et al. Postprandial monocyte activation in individuals with metabolic syndrome. J Clin Endocrinol Metab. 2016;101(11):4195–204.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438(7068):612–21.  https://doi.org/10.1038/nature04399.CrossRefPubMedGoogle Scholar
  18. 18.
    Plakkal Ayyappan J, Paul A, Goo YH. Lipid droplet-associated proteins in atherosclerosis (review). Mol Med Rep. 2016;13(6):4527–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098.  https://doi.org/10.1126/science.aaf1098.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Christ A, Bekkering S, Latz E, Riksen NP. Long-term activation of the innate immune system in atherosclerosis. Semin Immunol. 2016;28(4):384–93.  https://doi.org/10.1016/j.smim.2016.04.004.CrossRefPubMedGoogle Scholar
  21. 21.
    Pothineni NVK, Subramany S, Kuriakose K, et al. Infections, atherosclerosis, and coronary heart disease. Eur Heart J. 2017;38(43):3195–201.CrossRefPubMedGoogle Scholar
  22. 22.
    Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34(8):1731–8.  https://doi.org/10.1161/ATVBAHA.114.303887.CrossRefPubMedGoogle Scholar
  23. 23.
    van der Valk FM, Bekkering S, Kroon J, et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation. 2016;134(8):611–24.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van der Veen JN, Kruit JK, Havinga R, Baller JFW, Chimini G, Lestavel S, et al. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res. 2005;46(3):526–34.  https://doi.org/10.1194/jlr.M400400-JLR200.CrossRefPubMedGoogle Scholar
  25. 25.
    Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37(25):1959–67.  https://doi.org/10.1093/eurheartj/ehv653.CrossRefPubMedGoogle Scholar
  26. 26.
    Samstad EO, Niyonzima N, Nymo S, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192(6):2837–45.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Abela GS, Kalavakunta JK, Janoudi A, Leffler D, Dhar G, Salehi N, et al. Frequency of cholesterol crystals in culprit coronary artery aspirate during acute myocardial infarction and their relation to inflammation and myocardial injury. Am J Cardiol. 2017;120(10):1699–707.  https://doi.org/10.1016/j.amjcard.2017.07.075.CrossRefPubMedGoogle Scholar
  28. 28.
    Mason RP, Jacob RF. Membrane microdomains and vascular biology: emerging role in atherogenesis. Circulation. 2003;107(17):2270–3.  https://doi.org/10.1161/01.CIR.0000062607.02451.B6.CrossRefPubMedGoogle Scholar
  29. 29.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Karasawa T, Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb. 2017;24(5):443–51.  https://doi.org/10.5551/jat.RV17001.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Menu P, Pellegrin M, Aubert JF, Bouzourene K, Tardivel A, Mazzolai L, et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis. 2011;2(3):e137.  https://doi.org/10.1038/cddis.2011.18.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–20.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hendrikx T, Jeurissen ML, van Gorp PJ, et al. Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in Ldlr(-/-) mice. FEBS J. 2015;282(12):2327–38.  https://doi.org/10.1111/febs.13279.CrossRefPubMedGoogle Scholar
  35. 35.
    Freigang S, Ampenberger F, Weiss A, et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1alpha and sterile vascular inflammation in atherosclerosis. Nat Immunol. 2013;14(10):1045–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Tan HW, Liu X, Bi XP, et al. IL-18 overexpression promotes vascular inflammation and remodeling in a rat model of metabolic syndrome. Atherosclerosis. 2010;208(2):350–7.CrossRefPubMedGoogle Scholar
  37. 37.
    de Nooijer R, von der Thusen JH, Verkleij CJ, et al. Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler Thromb Vasc Biol. 2004;24(12):2313–9.  https://doi.org/10.1161/01.ATV.0000147126.99529.0a.CrossRefPubMedGoogle Scholar
  38. 38.
    Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Usui F, Shirasuna K, Kimura H, et al. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 2012;425(2):162–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85.  https://doi.org/10.1038/nature21363.CrossRefPubMedGoogle Scholar
  41. 41.
    Norata GD, Caligiuri G, Chavakis T, et al. The cellular and molecular basis of translational immunometabolism. Immunity. 2015;43(3):421–34.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Masters SL, Latz E, O’Neill LA. The inflammasome in atherosclerosis and type 2 diabetes. Sci Transl Med. 2011;3(81):81ps17.  https://doi.org/10.1126/scitranslmed.3001902.CrossRefPubMedGoogle Scholar
  44. 44.
    Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Murphy AJ, Akhtari M, Tolani S, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Investig. 2011;121(10):4138–49.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Westerterp M, Gourion-Arsiquaud S, Murphy AJ, et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell. 2012;11(2):195–206.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010;328(5986):1689–93.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16(11):678–89.  https://doi.org/10.1038/nrm4074.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 2011;13(5):540–9.  https://doi.org/10.1016/j.cmet.2011.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    •• Oishi Y, Spann NJ, Link VM, et al. SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism. Cell Metab. 2017;25(2):412–27. This paper highlights the role of SREBP1c in macrophages during the resolution phase thus providing novel insights into lipid requirements according to different functional stage of immune cells. CrossRefPubMedGoogle Scholar
  51. 51.
    Ito A, Hong C, Rong X, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Brown MS, Goldstein JL. Lipoprotein receptors and genetic control of cholesterol metabolism in cultured human cells. Die Naturwissenschaften. 1975;62(8):385–9.  https://doi.org/10.1007/BF00625346.CrossRefPubMedGoogle Scholar
  53. 53.
    Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134(1):97–111.  https://doi.org/10.1016/j.cell.2008.04.052.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14(5):489–99.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017;169(4):570–86.  https://doi.org/10.1016/j.cell.2017.04.004.CrossRefPubMedGoogle Scholar
  56. 56.
    Haas R, Smith J, Rocher-Ros V, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13(7):e1002202.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    • Mauro C, Smith J, Cucchi D, et al. Obesity-induced metabolic stress leads to biased effector memory CD4+ T cell differentiation via PI3K p110delta-Akt-mediated signals. Cell Metab. 2017;25(3):593–609. This paper provides evidence of a direct role of saturated free fatty acids in priming CD4 T cell differentiation and trafficking to inflammatory sites independently of the metabolic status of the host. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ni K, O’Neill HC. The role of dendritic cells in T cell activation. Immunol Cell Biol. 1997;75(3):223–30.  https://doi.org/10.1038/icb.1997.35.CrossRefPubMedGoogle Scholar
  59. 59.
    Steinman RM. Linking innate to adaptive immunity through dendritic cells. Novartis Found Symp. 2006;279:101–9. discussion 109–113, 216–109PubMedGoogle Scholar
  60. 60.
    Zernecke A. Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler Thromb Vasc Biol. 2015;35(4):763–70.  https://doi.org/10.1161/ATVBAHA.114.303566.CrossRefPubMedGoogle Scholar
  61. 61.
    •• Westerterp M, Gautier EL, Ganda A, et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 2017;25(6):1294–1304 e1296. This paper identifies an essential role of cholesterol efflux pathway mediated by ABCA1/G1 in maintaining immune tolerance. CrossRefPubMedGoogle Scholar
  62. 62.
    Charles-Schoeman C. Cardiovascular disease and rheumatoid arthritis: an update. Curr Rheumatol Rep. 2012;14(5):455–62.  https://doi.org/10.1007/s11926-012-0271-5.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ronda N, Favari E, Borghi MO, et al. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 2014;73(3):609–15.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang SH, Yuan SG, Peng DQ, Zhao SP. HDL and ApoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis. 2012;225(1):105–14.  https://doi.org/10.1016/j.atherosclerosis.2012.07.029.CrossRefPubMedGoogle Scholar
  65. 65.
    Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78.CrossRefPubMedGoogle Scholar
  67. 67.
    Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120(1):229–43.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Boekholdt SM, Hovingh GK, Mora S, et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials. J Am Coll Cardiol. 2014;64(5):485–94.  https://doi.org/10.1016/j.jacc.2014.02.615.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kinlay S. Low-density lipoprotein-dependent and -independent effects of cholesterol-lowering therapies on C-reactive protein: a meta-analysis. J Am Coll Cardiol. 2007;49(20):2003–9.  https://doi.org/10.1016/j.jacc.2007.01.083.CrossRefPubMedGoogle Scholar
  70. 70.
    Catapano AL, Pirillo A, Norata GD. Vascular inflammation and low-density lipoproteins: is cholesterol the link? A lesson from the clinical trials. Br J Pharmacol. 2017;174(22):3973–85.CrossRefPubMedGoogle Scholar
  71. 71.
    Noveck R, Stroes ES, Flaim JD, et al. Effects of an antisense oligonucleotide inhibitor of C-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers. J Am Heart Assoc. 2014;3(4):e001084.  https://doi.org/10.1161/JAHA.114.001084.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lane T, Wassef N, Poole S, et al. Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers. Circ Res. 2014;114(4):672–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Elliott P, Chambers JC, Zhang W, Clarke R, Hopewell JC, Peden JF, et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA. 2009;302(1):37–48.  https://doi.org/10.1001/jama.2009.954.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359(18):1897–908.  https://doi.org/10.1056/NEJMoa0707402.CrossRefPubMedGoogle Scholar
  75. 75.
    Wensley F, Gao P, Burgess S, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548.CrossRefPubMedGoogle Scholar
  76. 76.
    Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.  https://doi.org/10.1056/NEJMoa1615664.CrossRefPubMedGoogle Scholar
  77. 77.
    Nicholls SJ, Puri R, Anderson T, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316(22):2373–84.CrossRefPubMedGoogle Scholar
  78. 78.
    •• Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. This trial shows the cardiovascular benefit of inhibiting IL-1ß, thus supporting the inflammatory hypothesis of atherosclerosis. CrossRefPubMedGoogle Scholar
  79. 79.
    Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10105):1833–42.  https://doi.org/10.1016/S0140-6736(17)32247-X.CrossRefPubMedGoogle Scholar
  80. 80.
    Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–16.  https://doi.org/10.1038/nri3793.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Rosenfeld ME. Inflammation and atherosclerosis: direct versus indirect mechanisms. Curr Opin Pharmacol. 2013;13(2):154–60.  https://doi.org/10.1016/j.coph.2013.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Elhage R, Jawien J, Rudling M, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res. 2003;59(1):234–40.CrossRefPubMedGoogle Scholar
  83. 83.
    Li JM, Eslami MH, Rohrer MJ, Dargon P, Joris I, Hendricks G, et al. Interleukin 18 binding protein (IL18-BP) inhibits neointimal hyperplasia after balloon injury in an atherosclerotic rabbit model. J Vasc Surg. 2008;47(5):1048–57.  https://doi.org/10.1016/j.jvs.2007.12.005.CrossRefPubMedGoogle Scholar
  84. 84.
    Hueso M, De Ramon L, Navarro E, et al. Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF-kappaB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis. Atherosclerosis. 2016;255:80–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 1998;394(6689):200–3.CrossRefPubMedGoogle Scholar
  86. 86.
    Schonbeck U, Sukhova GK, Shimizu K, Mach F, Libby P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci U S A. 2000;97(13):7458–63.  https://doi.org/10.1073/pnas.97.13.7458.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bot I, Ortiz Zacarias NV, de Witte WE, et al. A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy. Sci Rep. 2017;7(1):52.  https://doi.org/10.1038/s41598-017-00104-z.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Olzinski AR, Turner GH, Bernard RE, Karr H, Cornejo CA, Aravindhan K, et al. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment. Arterioscler Thromb Vasc Biol. 2010;30(2):253–9.  https://doi.org/10.1161/ATVBAHA.109.198812.CrossRefPubMedGoogle Scholar
  89. 89.
    White HD, Held C, Stewart R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370(18):1702–11.CrossRefPubMedGoogle Scholar
  90. 90.
    Silva LC, Ortigosa LC, Benard G. Anti-TNF-alpha agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2010;2(6):817–33.  https://doi.org/10.2217/imt.10.67.CrossRefPubMedGoogle Scholar
  91. 91.
    Ridker PM, MacFadyen JG, Everett BM, et al: Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2017.  https://doi.org/10.1016/S0140-6736(17)32814-3.
  92. 92.
    Everett BM, Pradhan AD, Solomon DH, Paynter N, MacFadyen J, Zaharris E, et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013;166(2):199–207 e115.  https://doi.org/10.1016/j.ahj.2013.03.018.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Angela Pirillo
    • 1
    • 2
  • Fabrizia Bonacina
    • 3
  • Giuseppe Danilo Norata
    • 3
    • 4
  • Alberico Luigi Catapano
    • 2
    • 3
    • 5
  1. 1.Center for the Study of AtherosclerosisBassini HospitalMilanItaly
  2. 2.IRCCS MultimedicaMilanItaly
  3. 3.Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly
  4. 4.School of Biomedical Sciences, Curtin Health Innovation Research InstituteCurtin UniversityPerthAustralia
  5. 5.Department of Pharmacological and Biomolecular SciencesUniversity of Milan and IRCCS MultimedicaMilanItaly

Personalised recommendations