Skip to main content
Log in

Cardiometabolic Impact of Non-Statin Lipid Lowering Therapies

  • Nonstatin Drugs (WB Borden, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Among the range of lipid modifying medications currently available, statins clearly stand as the primary agent capable of reducing cardiovascular risk. While non-statin lipid-lowering drugs improve lipid parameters, their impact on clinical outcomes is less clear, thus necessitating an even closer look at ancillary effects. Recent studies have reported the potential cardiometabolic effects of statins, yet considerably less information has been published about cardiometabolic changes associated with non-statin lipid-lowering agents. This review describes the cardiometabolic profile of non-statin lipid-lowering agents—fibrates, niacin, omega-3 polyunsaturated fatty acids, ezetimibe, and bile acid sequestrants—and therefore aims to facilitate informed decision-making in the pharmacologic management of lipid abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.

    CAS  PubMed  Google Scholar 

  2. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317(20):1237–45.

    CAS  PubMed  Google Scholar 

  3. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA. 2001;285(12):1585–91.

    CAS  PubMed  Google Scholar 

  4. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.

    CAS  PubMed  Google Scholar 

  5. ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    PubMed  Google Scholar 

  6. Steiner G. Altering triglyceride concentrations changes insulin-glucose relationships in hypertriglyceridemic patients. Double-blind study with gemfibrozil with implications for atherosclerosis. Diabetes Care. 1991;14(11):1077–81.

    CAS  PubMed  Google Scholar 

  7. Bajaj M, Suraamornkul S, Hardies LJ, et al. Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia. 2007;50(8):1723–31.

    CAS  PubMed  Google Scholar 

  8. Playford DA, Watts GF, Best JD, et al. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am J Cardiol. 2002;90(11):1254–7.

    CAS  PubMed  Google Scholar 

  9. Hamilton SJ, Chew GT, Davis TM, et al. Fenofibrate improves endothelial function in the brachial artery and forearm resistance arterioles of statin-treated Type 2 diabetic patients. Clin Sci (Lond). 2010;118(10):607–15.

    CAS  Google Scholar 

  10. Wu TJ, Ou HY, Chou CW, et al. Decrease in inflammatory cardiovascular risk markers in hyperlipidemic diabetic patients treated with fenofibrate. Ann Clin Lab Sci. 2007;37:158–66.

    CAS  PubMed  Google Scholar 

  11. Oki K, Koide J, Nakanishi S, et al. Fenofibrate increases high molecular weight adiponectin in subjects with hypertriglyceridemia. Endocr J. 2007;54:431–5.

    CAS  PubMed  Google Scholar 

  12. Idzior-Walus B, Sieradzki J, Rostworowski W, et al. Effects of comicronisedfenofibrate on lipid and insulin sensitivity in patients with polymetabolic syndrome X. Eur J Clin Investig. 2000;30(10):871–8.

    CAS  Google Scholar 

  13. Athyros VG, Papageorgiou AA, Athyrou VV, et al. Atorvastatin and micronized fenofibrate alone and in combination in type 2 diabetes with combined hyperlipidemia. Diabetes Care. 2002;25:1198–202.

    CAS  PubMed  Google Scholar 

  14. Keating GM. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am J Cardiovasc Drugs. 2011;11:227–47.

    CAS  PubMed  Google Scholar 

  15. Okopien B, Krysiak R, Herman ZS. Effects of short-term fenofibrate treatment on circulating markers of inflammation and hemostasis in patients with impaired glucose tolerance. J Clin Endocrinol Metab. 2006;91:1770–8.

    CAS  PubMed  Google Scholar 

  16. Wysocki J, Belowski D, Kalina M, et al. Effects of micronized fenofibrate on insulin resistance in patients with metabolic syndrome. Int J Clin Pharmacol Ther. 2004;42:212–7.

    CAS  PubMed  Google Scholar 

  17. Krysiak R, Handzlik G, Okopien B. Hemostatic effects of fenofibrate in patients with mixed dyslipidemia and impaired fasting glucose. Pharmacol Rep. 2010;62:1099–107. This study found that fenofibrate improved insulin resistance in patients with metabolic syndrome and fasting glucose in patients with impaired fasting glucose.

  18. Krysiak R, Stachura-Kulach A, Okopien B. Metabolic and monocyte-suppressing actions of fenofibrate in patients with mixed dyslipidemia and early glucose metabolism disturbances. Pharmacol Rep. 2010;62:120–30.

    CAS  PubMed  Google Scholar 

  19. Koh KK, Quon MJ, Lim S, et al. Effects of fenofibrate therapy on circulating adipocytokines in patients with primary hypertriglyceridemia. Atherosclerosis. 2011;214(1):144–7.

    CAS  PubMed  Google Scholar 

  20. Perreault L, Bergman BC, Hunerdosse DM, et al. Fenofibrate administration does not affect muscle triglyceride concentration or insulin sensitivity in humans. Metab Clin Exp. 2011;60:1107–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Lee SH, Cho KI, Kim JY, et al. Non-lipid effects of rosuvastatin-fenofibrate combination therapy in high-risk Asian patients with mixed hyperlipidemia. Atherosclerosis. 2012;221:169–75.

    CAS  PubMed  Google Scholar 

  22. Avogaro A, Piliego T, Catapano A, et al. The effect of gemfibrozil on lipid profile and glucose metabolism in hypertriglyceridaemic well-controlled non-insulin-dependent diabetic patients. For the gemfibrozil study group. Actadiabetologica. 1999;36:27–33.

    CAS  Google Scholar 

  23. Whitelaw DC, Smith JM, Nattrass M. Effects of gemfibrozil on insulin resistance to fat metabolism in subjects with type 2 diabetes and hypertriglyceridaemia. Diabetes Obes Metab. 2002;4:187–94.

    CAS  PubMed  Google Scholar 

  24. Jeng JR, Jeng CY, Sheu WH, et al. Gemfibrozil treatment of hypertriglyceridemia: improvement on fibrinolysis without change of insulin resistance. Am Heart J. 1997;134:565–71.

    CAS  PubMed  Google Scholar 

  25. Jeng CY, Sheu WH, Fuh MM, et al. Gemfibrozil treatment of endogenous hypertriglyceridemia: effect on insulin-mediated glucose disposal and plasma insulin concentrations. J Clin Endocrinol Metab. 1996;81:2550–3.

    CAS  PubMed  Google Scholar 

  26. Asplund-Carlson A. Effects of gemfibrozil therapy on glucose tolerance, insulin sensitivity and plasma plasminogen activator inhibitor activity in hypertriglyceridaemia. J Cardiovasc Risk. 1996;3:385–90.

    CAS  PubMed  Google Scholar 

  27. Mussoni L, Mannucci L, Sirtori C, et al. Effects of gemfibrozil on insulin sensitivity and on haemostatic variables in hypertriglyceridemic patients. Atherosclerosis. 2000;148:397–406.

    CAS  PubMed  Google Scholar 

  28. Dumont M, Mauriege P, Bergeron J, et al. Effect of a six month gemfibrozil treatment and dietary recommendations on the metabolic risk profile of visceral obese men. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2001;25:1136–43.

    CAS  Google Scholar 

  29. Raslova K, Nagyova A, Dobiasova M, et al. Effect of ciprofibrate on lipoprotien metabolism and oxidative stress parameters in patients with type 2 diabetes mellitus and atherogenic lipoprotein phenotype. Actadiabetologica. 2000;37:131–4.

    CAS  Google Scholar 

  30. Paragh G, Seres I, Harangi M, et al. Ciprofibrate increases paraoxonase activity in patients with metabolic syndrome. Br J Clin Pharmacol. 2006;61:694–701.

    CAS  PubMed  Google Scholar 

  31. Brunmair B, Staniek K, Dörig J, et al. Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia. 2006;49(11):2713–22.

    CAS  PubMed  Google Scholar 

  32. Attia N, Durlach V, Roche D, et al. Post-prandial metabolism of triglyceride-rich lipoproteins in non-insulin-dependent diabetic patients before and after bezafibrate treatment. Eur J Clin Investig. 1997;27:55–63.

    CAS  Google Scholar 

  33. Onuma T, Tsutsui M, Boku A, et al. Effects of bezafibrate on abnormal lipoprotein metabolism and glucose-tolerance in patients with non-insulin-dependent diabetes-mellitus. Curr Ther Res Clin E. 1992;51:439–47.

    Google Scholar 

  34. Riccardi G, Genovese S, Saldalamacchia G, et al. Effects of bezafibrate on insulin-secretion and peripheral insulin sensitivity in hyperlipidemic patients with and without diabetes. Atherosclerosis. 1989;75:175–81.

    CAS  PubMed  Google Scholar 

  35. Ogawa S, Takeuchi K, Sugimura K, et al. Bezafibrate reduces blood glucose in type 2 diabetes mellitus. Metabol-Clin Exp. 2000;49:331–4.

    CAS  Google Scholar 

  36. Teramoto T, Shirai K, Daida H, et al. Effects of bezafibrate on lipid and glucose metabolism in dyslipidemic patients with diabetes: The j-benefit study. Cardiovasc Diabetol. 2012;11:29.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Jones IR, Swai A, Taylor R, et al. Lowering of plasma glucose concentrations with bezafibrate in patients with moderately controlled niddm. Diabetes Care. 1990;13:855–63.

    CAS  PubMed  Google Scholar 

  38. Winocour PH, Durrington PN, Bhatnagar D, et al. Double-blind placebo-controlled study of the effects of bezafibrate on blood lipids, lipoproteins, and fibrinogen in hyperlipidaemic type 1 diabetes mellitus. Diabet Med J Br Diabet Assoc. 1990;7:736–43.

    CAS  Google Scholar 

  39. Karhapaa P, Uusitupa M, Voutilainen E, et al. Effects of bezafibrate on insulin sensitivity and glucose tolerance in subjects with combined hyperlipidemia. Clin Pharmacol Ther. 1992;52:620–6.

    CAS  PubMed  Google Scholar 

  40. Almer LO, Kjellstrom T. The fibrinolytic system and coagulation during bezafibrate treatment of hypertriglyceridemia. Atherosclerosis. 1986;61:81–5.

    CAS  PubMed  Google Scholar 

  41. Krysiak R, Gdula-Dymek A, Okopien B. The effect of bezafibrate and omega-3 fatty acids on lymphocyte cytokine release and systemic inflammation in patients with isolated hypertriglyceridemia. Eur J Clin Pharmacol. 2011;67:1109–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Tenenbaum A, Fisman EZ, Boyko V, et al. Attenuation of progression of insulin resistance in patients with coronary artery disease by bezafibrate. Arch Intern Med. 2006;166:737–41.

    CAS  PubMed  Google Scholar 

  43. Tenenbaum A, Motro M, Fisman EZ, et al. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease. Circulation. 2004;109:2197–202.

    CAS  PubMed  Google Scholar 

  44. Tenenbaum A, Motro M, Fisman EZ, et al. Effect of bezafibrate on incidence of type 2 diabetes mellitus in obese patients. Eur Heart J. 2005;26:2032–8.

    CAS  PubMed  Google Scholar 

  45. Tenenbaum A, Fisman EZ. Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention? Cardiovasc Diabetol. 2012;11:140.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Flory JH, Ellenberg S, Szapary PO, et al. Antidiabetic action of bezafibrate in a large observational database. Diabetes Care. 2009;32:547–51.

    CAS  PubMed  Google Scholar 

  47. Hochholzer W, Berg DD, Giugliano RP. The facts behind niacin. Ther Adv Cardiovasc Dis. 2011;5:227–40.

    CAS  PubMed  Google Scholar 

  48. Rasouli N, Hale T, Kahn SE, et al. Effects of short-term experimental insulin resistance and family history of diabetes on pancreatic beta-cell function in nondiabetic individuals. J Clin Endocrinol Metab. 2005;90(10):5825–33.

    CAS  PubMed  Google Scholar 

  49. Chang AM, Smith MJ, Galecki AT, et al. Impaired beta-cell function in human aging: response to nicotinic acid-induced insulin resistance. J Clin Endocrinol Metab. 2006;91(9):3303–9.

    CAS  PubMed  Google Scholar 

  50. Kelly JJ, Lawson JA, Campbell LV, et al. Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjects. J Hum Hypertens. 2000;14:567–72.

    CAS  PubMed  Google Scholar 

  51. Poynten AM, Gan SK, Kriketos AD, et al. Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content. Metab Clin Exp. 2003;52:699–704.

    CAS  PubMed  Google Scholar 

  52. The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA. 1975;231(4):360–81.

    Google Scholar 

  53. Elam MB, Hunninghake DB, Davis KB, et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the admit study: a randomized trial. Arterial disease multiple intervention trial. JAMA. 2000;284(10):1263–70.

    CAS  PubMed  Google Scholar 

  54. Garg A, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA. 1990;264(6):723–6.

    CAS  PubMed  Google Scholar 

  55. Grundy SM, Vega GL, McGovern ME, et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch Intern Med. 2002;162:1568–76.

    CAS  PubMed  Google Scholar 

  56. Chen F, Maccubbin D, Yan L, et al. Lipid-altering efficacy and safety profile of co-administered extended release niacin/laropiprant and simvastatin versus atorvastatin in patients with mixed hyperlipidemia. Int J Cardiol. 2013;167:225–31.

    PubMed  Google Scholar 

  57. Maccubbin D, Bays HE, Olsson AG, et al. Lipid-modifying efficacy and tolerability of extended-release niacin/laropiprant in patients with primary hypercholesterolaemia or mixed dyslipidaemia. Int J Clin Pract. 2008;62:1959–70.

    CAS  PubMed  Google Scholar 

  58. Guyton JR, Fazio S, Adewale AJ, et al. Effect of extended-release niacin on new-onset diabetes among hyperlipidemic patients treated with ezetimibe/simvastatin in a randomized controlled trial. Diabetes Care. 2012;35:857–60. Long-acting niacin increases the incidence of DM2 amongst patients with impaired fasting glucose, though blood glucose levels normalize after 64 weeks.

  59. AIM-HIGH Investigators, Boden WE, Probstfield JL, et al. Niacin in patients with low hdl cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    PubMed  Google Scholar 

  60. HPS2-THRIVE Collaborative Group. Hps2-thrive randomized placebo-controlled trial in 25 673 high-risk patients of er niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34:1279–91.

    Google Scholar 

  61. Berglund L, Brunzell JD, Goldberg AC, et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(9):2969–89.

    CAS  PubMed  Google Scholar 

  62. Balk EM, Lichtenstein AH, Chung M, et al. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1):19–30.

    CAS  PubMed  Google Scholar 

  63. GlaxoSmithKline. LOVAZA (omega-3-acid ethyl esters) Capsules [Package Insert]. 2012.

  64. Amarin Pharma Inc. VASCEPA [Package Insert]. Bedminster, NJ. 2012:1–11.

  65. Friedberg CE, Janssen MJ, Heine RJ, et al. Fish oil and glycemic control in diabetes. A meta-analysis. Diabetes Care. 1998;21(4):494–500.

    CAS  PubMed  Google Scholar 

  66. Griffin MD, Sanders TAB, Davies IG, et al. Effects of altering the ratio of dietary n-6 to n-3 fatty acids on insulin sensitivity, lipoprotein size, and postprandial lipemia in men and postmenopausal women aged 45-70 y: the OPTILIP Study. Am J Clin Nutr. 2006;84(6):1290–8.

    CAS  PubMed  Google Scholar 

  67. Jacobson TA, Glickstein SB, Rowe JD, et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol. 2012;6(1):5–18.

    PubMed  Google Scholar 

  68. Bays HE, Ballantyne CM, Kastelein JJ, et al. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial). Am J Cardiol. 2011;108(5):682–90.

    CAS  PubMed  Google Scholar 

  69. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354(9177):447–55.

    Google Scholar 

  70. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA. 2006;296(15):1885–99.

    CAS  PubMed  Google Scholar 

  71. Aarsetoey H, Aarsetoey R, Lindner T, et al. Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids. 2011;46(2):151–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. ORIGIN Trial Investigators, Bosch J, Gerstein HC, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309–18.

    CAS  PubMed  Google Scholar 

  73. Hooper L, Thompson RL, Harrison RA, et al. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database of Systematic Reviews. Chichester: Wiley; 2004 Oct 18; (4):CD003177.

  74. Chapkin RS, Kim W, Lupton JR, et al. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins Leukot Essent Fat Acids. 2009;81(2–3):187–91.

    CAS  Google Scholar 

  75. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr. 2011;2(4):304–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. James MJ, Gibson RA, Cleland LG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71(1 Suppl):343S–8S.

    CAS  PubMed  Google Scholar 

  77. Mohammadi E, Rafraf M, Farzadi L, et al. Effects of omega-3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac J Clin Nutr. 2012;21(4):511–8.

    CAS  PubMed  Google Scholar 

  78. Silva FM, de Almeida JC, Feoli AM. Effect of diet on adiponectin levels in blood. Nutr Rev. 2011;69(10):599–612.

    PubMed  Google Scholar 

  79. Krebs JD, Browning LM, McLean NK, et al. Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int J Obes(Lond). 2006;30(10):1535–44.

    CAS  Google Scholar 

  80. Tishinsky JM, Dyck DJ, Robinson LE. Lifestyle factors increasing adiponectin synthesis and secretion. Vitam Horm. 2012;90:1–30.

    CAS  PubMed  Google Scholar 

  81. Wu JHY, Cahill LE, Mozaffarian D. Effect of fish oil on circulating adiponectin: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. May 23, 2013; jc.2012–3899.

    Google Scholar 

  82. Vaughan RA, Garcia-Smith R, Bisoffi M, et al. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids Health Dis. 2012;11:142.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Nettleton JA, Katz R. n-3 long-chain polyunsaturated fatty acids in type 2 diabetes: a review. J Am Diet Assoc. 2005;105(3):428–40.

    CAS  PubMed  Google Scholar 

  84. Juárez-López C, Klünder-Klünder M, Madrigal-Azcárate A, et al. Omega-3 polyunsaturated fatty acids reduce insulin resistance and triglycerides in obese children and adolescents. Pediatr Diabetes. 2013;14(5):377–83.

    PubMed  Google Scholar 

  85. Ramel A, Martinéz A, Kiely M, et al. Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese European young adults. Diabetologia. 2008;51(7):1261–8.

    CAS  PubMed  Google Scholar 

  86. López-Alarcón M, Martínez-Coronado A, Velarde-Castro O, et al. Supplementation of n3 long-chain polyunsaturated fatty acid synergistically decreases insulin resistance with weight loss of obese prepubertal and pubertal children. Arch Med Res. 2011;42(6):502–8.

    PubMed  Google Scholar 

  87. Couet C, Delarue J, Ritz P, et al. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes Relat Metab Disord. 1997;21(8):637–43.

    CAS  PubMed  Google Scholar 

  88. Munro IA, Garg ML. Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. Br J Nutr. 2011;108(08):1466–74.

    Google Scholar 

  89. Mori TA, Bao DQ, Burke V, et al. Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr. 1999;70(5):817–25.

    CAS  PubMed  Google Scholar 

  90. Kunesová M, Braunerová R, Hlavatý P, et al. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol Res. 2006;55(1):63–72.

    PubMed  Google Scholar 

  91. Munro IA, Garg ML. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promotes weight loss in obese adults: a double-blinded randomised controlled trial. Food Funct. 2013;4(4):650–8.

    CAS  PubMed  Google Scholar 

  92. Vasickova L, Stavek P, Suchanek P. Possible effect of DHA intake on body weight reduction and lipid metabolism in obese children. Neuro Endocrinol Lett. 2011;32 Suppl 2:64–7.

    CAS  PubMed  Google Scholar 

  93. Ruzickova J, Rossmeisl M, Prazak T, et al. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39(12):1177–85.

    CAS  PubMed  Google Scholar 

  94. Parra D, Ramel A, Bandarra N, et al. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51(3):676–80.

    CAS  PubMed  Google Scholar 

  95. Montori VM, Farmer A, Wollan PC, et al. Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care. 2000;23(9):1407–15.

    CAS  PubMed  Google Scholar 

  96. Hartweg J, Perera R, Montori V, et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD003205. doi:10.1002/14651858.CD003205.pub2.

  97. Summers LKM, Fielding BA, Bradshaw HA, et al. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia. 2002;45(3):369–77.

    CAS  PubMed  Google Scholar 

  98. Garaulet M, Pérez-Llamas F, Pérez-Ayala M, et al. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr. 2001;74(5):585–91.

    CAS  PubMed  Google Scholar 

  99. Ebrahimi M, Ghayour-Mobarhan M, Rezaiean S, et al. Omega-3 fatty acid supplements improve the cardiovascular risk profile of subjects with metabolic syndrome, including markers of inflammation and auto-immunity. Acta Cardiol. 2009;64(3):321–7. In patients with metabolic syndrome, 1 gram daily of omega-3 fatty acids for six months was associated with weight loss.

  100. Zhong Y, Wang J, Gu P, Shao J, Lu B, Jiang S. Effect of ezetimibe on insulin secretion in db/db diabetic mice. Exp Diabetes Res. 2012;2012:420854.

    PubMed Central  PubMed  Google Scholar 

  101. Kosoglou T, Statkevich P, Johnson-Levonas AO, et al. Ezetimibe: a review of its metabolism, pharmacokinetics, and drug interactions. Clin Pharmacokinet. 2005;44:467–94.

    CAS  PubMed  Google Scholar 

  102. Hildemann SK, Barho C, Karmann B, et al. Dual cholesterol inhibition with ezetimibe/simvastatin in pre-treated hypercholesterolaemic patients with coronary heart disease or diabetes mellitus: prospective observational cohort studies in clinical practice. Curr Med Res Opin. 2007;23(4):713–9.

    CAS  PubMed  Google Scholar 

  103. Pearson TA, Denke MA, McBride PE, et al. A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATPIII goals for LDL cholesterol in hypercholesterolemic patients: the ezetimibe add-on to statin for effectiveness (EASE) trial. Mayo Clin Proc. 2005;80:587–95.

    CAS  PubMed  Google Scholar 

  104. Gaudiani LM, Lewin A, Meneghini L, et al. Efficacy and safety of ezetimibe co-administered with simvastatin in thiazolidinedione-treated type 2 diabetic patients. Diabetes Obes Metab. 2005;7:88–97.

    CAS  PubMed  Google Scholar 

  105. Knopp RH, Gitter H, Truitt T, et al. Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia. Eur Heart J. 2003;24:729–41.

    CAS  PubMed  Google Scholar 

  106. Kastelein JJ, Akdim F, Stroes ES, et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med. 2008;358:1431–43.

    CAS  PubMed  Google Scholar 

  107. Howard BV, Roman MJ, Devereux RB, et al. Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes: the SANDS randomized trial. JAMA. 2008;299(14):1678–89.

    CAS  PubMed  Google Scholar 

  108. Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Carabello BA. The SEAS Trial. Curr Cardiol Rep. 2010;12(2):122–4.

    PubMed  Google Scholar 

  110. Merck. A Multicenter, Double-Blind, Randomized Study to Establish the Clinical Benefit and Safety of Vytorin (Ezetimibe/Simvastatin Tablet) vs Simvastatin Monotherapy in High-Risk Subjects Presenting With Acute Coronary Syndrome (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial - IMPROVE IT) In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2013 Nov 7]. Available from: http://clinicaltrials.gov/show/NCT00202878 NLM Identifier: NCT00202878.

  111. Umemoto T, Subramanian S, Ding Y, et al. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation. J Lipid Res. 2012;53:2380–9.

    CAS  PubMed  Google Scholar 

  112. Tsunoda T, Nozue T, Yamada M, et al. Effects of ezetimibe on atherogenic lipoproteins and glucose metabolism in patients with diabetes and glucose intolerance. Diabetes Res Clin Pract. 2013;100(1):46–52.

    CAS  PubMed  Google Scholar 

  113. Yagi S, Akaike M, Aihara K, et al. Ezetimibe ameliorates metabolic disorders and microalbuminuria in patients with hypercholesterolemia. J Atheroscler Thromb. 2010;17:173–80.

    CAS  PubMed  Google Scholar 

  114. Nakamura T, Sato E, Amaha M, et al. Ezetimibe reduces urinary albumin excretion in hypercholesterolaemic type 2 diabetes patients with microalbuminuria. J Int Med Res. 2012;40(2):798–803.

    CAS  PubMed  Google Scholar 

  115. Chan DC, Watts GF, Gan SK, et al. Effect of ezetimibe on hepatic fat, inflammatory markers, and adiponectin B-100 kinetics in insulin-resistant obese subjects on a weight loss diet. Diabetes Care. 2010;33:1134–9.

    CAS  PubMed  Google Scholar 

  116. Tamura Y, Murayama T, Minami M, et al. Ezetimibe ameliorates early diabetic nephropathy in db/db mice. J Atheroscler Thromb. 2012;19(7):608–18.

    CAS  PubMed  Google Scholar 

  117. Takeuchi A, Sano N, Takikawa H. Inhibition of ileal bile acid absorption by colestimide. J Gastroenterol Hepatol. 2003;18:548–53.

    CAS  PubMed  Google Scholar 

  118. Insull Jr W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J. 2006;99(3):257–73.

    PubMed  Google Scholar 

  119. Lipids research clinics program. The lipid research clinics coronary primary prevention trial results. JAMA 1984;251(3);351–64.

    Google Scholar 

  120. Bays HE, Goldberg RB. The ‘forgotten’ bile acid sequestrants: is now a good time to remember? Am J Therapeutics. 2007;14(6):567–80.

    Google Scholar 

  121. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    CAS  PubMed  Google Scholar 

  122. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. Ann Intern Med. 1994;121:416–22.

    CAS  PubMed  Google Scholar 

  123. Yamakawa T, Takano T, Utsunomiya H, et al. Effect of colestimide therapy for glycemic control in type 2 diabetes with hypercholesterolemia. Endocrin J. 2007;54:53–8.

    CAS  Google Scholar 

  124. Bays HE, Goldberg RB, Truitt KE, et al. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin. Arch Int Med. 2008;168:1975–83.

    CAS  Google Scholar 

  125. Fonseca VA, Rosenstock J, Wang AC, et al. Colesevelam HCL improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care. 2008;31(8):1479–84.

    CAS  PubMed  Google Scholar 

  126. Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the glucose-lowering effect of WelChol study GLOWS: a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther. 2007;29:74–83.

    CAS  PubMed  Google Scholar 

  127. Goldberg RB, Fonseca VA, Truitt KE, et al. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Int Med. 2008;168(14):1531–40.

    CAS  Google Scholar 

  128. Sugimoto-Kawabata K, Shimada H, Sakai K, et al. Colestilan decreases weight gain by enhanced NEFA incorporation in biliary lipids and fecal lipid excretion. J Lipid Res. 2013;54(5):1255–64.

    CAS  PubMed  Google Scholar 

  129. Koike K, Murakami K, Nozaki N, et al. Colestilan, a new bile acid-sequestering resin, reduces bodyweight in postmenopausal women who have dieted unsuccessfully. Drugs R D. 2005;6(5):273–9.

    CAS  PubMed  Google Scholar 

  130. Handelsman Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care. 2011;34(2):S244–50.

    CAS  PubMed  Google Scholar 

  131. Sharma S, Sowjanya A, Kumari M, et al. Biochemical mechanism of insulin sensitization, lipid modulation and anti-atherogenic potential of PPAR alpha/gamma dual agonist: ragaglitazar. Life Sci. 2006;80(3):235–44.

    CAS  PubMed  Google Scholar 

  132. Cavender MA, Lincoff AM. Therapeutic potential of aleglitazar, a new dual PPAR-α/γ agonist: implications for cardiovascular disease in patients with diabetes mellitus. Am J Cardiovasc Drugs. 2010;10(4):209–16.

    CAS  PubMed  Google Scholar 

  133. Ling H, Burns TL, Hilleman DE. Novel strategies for managing dyslipidemia: treatment beyond statins. Postgrad Med. 2012;124(6):43–54.

    PubMed  Google Scholar 

  134. Kendall DM, Rubin CJ, Mohideen P, et al. Improvement of glycemic control, triglycerides, and HDL cholesterol levels with muraglitazar, a dual (alpha/gamma) peroxisome proliferator-activated receptor activator, in patients with type 2 diabetes inadequately controlled with metformin monotherapy: A double-blind, randomized, pioglitazone-comparative study. Diabetes Care. 2006;29(5):1016–23.

    CAS  PubMed  Google Scholar 

  135. Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005;294(20):2581–6.

    CAS  PubMed  Google Scholar 

  136. Wilding JPH, Gause-Nilsson I, Persson A. Tesaglitazar, as add-on therapy to sulphonylurea, dose-dependently improves glucose and lipid abnormalities in patients with type 2 diabetes. Diab Vasc Dis Res. 2007;4(3):194–203.

    PubMed  Google Scholar 

  137. Bays H, McElhattan J, Bryzinski BS. A double-blind, randomised trial of tesaglitazar versus pioglitazone in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2007;4(3):181–93.

    PubMed  Google Scholar 

  138. Göke B, Gause-Nilsson I, Persson A. The effects of tesaglitazar as add-on treatment to metformin in patients with poorly controlled type 2 diabetes. Diab Vasc Dis Res. 2007;4(3):204–13.

    PubMed  Google Scholar 

  139. Ratner RE, Parikh S, Tou C. Efficacy, safety and tolerability of tesaglitazar when added to the therapeutic regimen of poorly controlled insulin-treated patients with type 2 diabetes. Diab Vasc Dis Res. 2007;4(3):214–21.

    PubMed  Google Scholar 

  140. Wilding JPH. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab. 2012;14(11):973–82.

    CAS  PubMed  Google Scholar 

  141. Roche halts investigation of aleglitazar following regular safety review of phase III trial [press release]. 10 July 2013. http://www.roche.com/media/media_releases/med-cor-2013-07-10.htm, Accessed 7 Nov 2013.

  142. Nainggolan L. All trials of diabetes drug aleglitizar are abandoned. Medscape. 10 July 2010. Available at http://www.medscape.com/viewarticle/807585, Accessed Nov 7 2013.

  143. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA. 2004;291(3):335–42.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Parag Goyal, Leon I. Igel, Keith LaScalea, and William B. Borden declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Borden.

Additional information

Drs. Goyal and Igel contributed equally as co-first authors to this article.

This article is part of the Topical Collection on Nonstatin Drugs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, P., Igel, L.I., LaScalea, K. et al. Cardiometabolic Impact of Non-Statin Lipid Lowering Therapies. Curr Atheroscler Rep 16, 390 (2014). https://doi.org/10.1007/s11883-013-0390-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0390-0

Keywords

Navigation