B Cell Disorders in Children—Part I


Purpose of Review

The advent of enhanced genetic testing has allowed for the discovery of gene defects underlying two broad categories of antibody deficiency in children: agammaglobulinemia and common variable immunodeficiency (CVID). This review describes the underlying gene defects and the clinical manifestations.

Recent Findings

Because novel monogenetic defects have been discovered in both categories, a strict dichotomous classification of B cell disorders as either X-linked agammaglobulinemia or common variable immunodeficiency is no longer appropriate.


Advances in genetic testing technology and the decreasing cost of such testing permit more precise diagnosis of B cell disorders, more helpful information for genetic counselors, and a better understanding of the complex process of B cell development and function. More disorders await discovery.

This is a preview of subscription content, log in to check access.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    • Silva P, Justicia A, Regueiro A, Fariña S, Couselo J, Loidi L. Autosomal recessive agammaglobulinemia due to defect in μ heavy chain caused by a novel mutation in the IGHM gene. Genes Immun. 2017;18:197–9. https://doi.org/10.1038/gene.2017.14. This paper emphasizes that not all agammaglobulinemia is due to BTK mutations.

  2. 2.

    •• El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA): phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J. 2019;12(3):100018. https://doi.org/10.1016/j.waojou.2019.100018. This article discusses the heterogenous nature of XLA, providing novel updates on diagnostic challenges.

  3. 3.

    • Keller B, Shoukier M, Schulz K, Bhatt A, Heine I, Strohmeier V, et al. Germline deletion of CIN85 in humans with X chromosome-linked antibody deficiency. J Exp Med. 2018;215(5):1327–36. https://doi.org/10.1084/jem.20170534. Another cause of X-linked agammaglobulinemia.

  4. 4.

    Conley ME, Sweinberg SK. Females with a disorder phenotypically identical to X-linked agammaglobulinemia. J Clin Immunol. 1992;12(2):139–43. https://doi.org/10.1007/bf00918144.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Minegishi Y, Coustan-Smith E, Wang YH, Cooper MD, Campana D, Conley ME. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med. 1998;187(1):71–7. https://doi.org/10.1084/jem.187.1.71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gemayel KT, Litman GW, Sriaroon P. Autosomal recessive agammaglobulinemia associated with an IGLL1 gene missense mutation. Ann Allergy Asthma Immunol. 2016;117(4):439–41. https://doi.org/10.1016/j.anai.2016.07.038.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Minegishi Y, Coustan-Smith E, Rapalus L, Ersoy F, Campana D, Conley ME. Mutations in Igalpha (CD79a) result in a complete block in B-cell development. J Clin Invest. 1999;104(8):1115–21. https://doi.org/10.1172/jci7696.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Wang Y, Kanegane H, Sanal O, Tezcan I, Ersoy F, Futatani T, et al. Novel Igalpha (CD79a) gene mutation in a Turkish patient with B cell-deficient agammaglobulinemia. Am J Med Genet. 2002;108(4):333–6. https://doi.org/10.1002/ajmg.10296.

    Article  PubMed  Google Scholar 

  9. 9.

    Khalili A, Plebani A, Vitali M, Abolhassani H, Lougaris V, Mirminachi B, et al. Autosomal recessive agammaglobulinemia: a novel non-sense mutation in CD79a. J Clin Immunol. 2014;34(2):138–41. https://doi.org/10.1007/s10875-014-9989-3.

    Article  PubMed  Google Scholar 

  10. 10.

    Dobbs AK, Yang T, Farmer D, Kager L, Parolini O, Conley ME. Cutting edge: a hypomorphic mutation in Igbeta (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J Immunol. 2007;179(4):2055–9. https://doi.org/10.4049/jimmunol.179.4.2055.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Ferrari S, Lougaris V, Caraffi S, Zuntini R, Yang J, Soresina A, et al. Mutations of the Igbeta gene cause agammaglobulinemia in man. J Exp Med. 2007;204(9):2047–51. https://doi.org/10.1084/jem.20070264.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Minegishi Y, Rohrer J, Coustan-Smith E, Lederman HM, Pappu R, Campana D, et al. An essential role for BLNK in human B cell development. Science. 1999;286(5446):1954–7. https://doi.org/10.1126/science.286.5446.1954.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lagresle-Peyrou C, Millili M, Luce S, Boned A, Sadek H, Rouiller J, et al. The BLNK adaptor protein has a nonredundant role in human B-cell differentiation. J Allergy Clin Immunol. 2014;134(1):145–54. https://doi.org/10.1016/j.jaci.2013.12.1083.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Conley ME, Dobbs AK, Quintana AM, Bosompem A, Wang YD, Coustan-Smith E, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85alpha subunit of PI3K. J Exp Med. 2012;209(3):463–70. https://doi.org/10.1084/jem.20112533.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    • Tang P, Upton JEM, Barton-Forbes MA, Salvadori MI, Clynick MP, Price AK, et al. Autosomal recessive agammaglobulinemia due to a homozygous mutation in PIK3R1. J Clin Immunol. 2018;38(1):88–95. https://doi.org/10.1007/s10875-017-0462-y. Report of a novel mutation causing AR agammaglobulinemia.

  16. 16.

    Kubota K, Kim JY, Sawada A, Tokimasa S, Fujisaki H, Matsuda-Hashii Y, et al. LRRC8 involved in B cell development belongs to a novel family of leucine-rich repeat proteins. FEBS Lett. 2004;564(1–2):147–52. https://doi.org/10.1016/s0014-5793(04)00332-1.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Sawada A, Takihara Y, Kim JY, Matsuda-Hashii Y, Tokimasa S, Fujisaki H, et al. A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J Clin Invest. 2003;112(11):1707–13. https://doi.org/10.1172/jci18937.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Boisson B, Wang YD, Bosompem A, Ma CS, Lim A, Kochetkov T, et al. A recurrent dominant negative E47 mutation causes agammaglobulinemia and BCR(−) B cells. J Clin Invest. 2013;123(11):4781–5. https://doi.org/10.1172/jci71927.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    • Ben-Ali M, Yang J, Chan KW, Ben-Mustapha I, Mekki N, Benabdesselem C, et al. Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol. 2017;140(4):1191–4.e4. https://doi.org/10.1016/j.jaci.2017.04.037. A mutation causing severe hypogammaglobulinemia and ALL.

  20. 20.

    Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Drager R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8. https://doi.org/10.1038/ni902.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    •• Schepp J, Chou J, Skrabl-Baumgartner A, Arkwright PD, Engelhardt KR, Hambleton S, et al. 14 years after discovery: clinical follow-up on 15 patients with inducible co-stimulator deficiency. Front Immunol. 2017;8:964. https://doi.org/10.3389/fimmu.2017.00964. A long-term followup report of patients with ICOS deficiency.

  22. 22.

    Bacchelli C, Buckridge S, Thrasher AJ, Gaspar HB. Translational mini-review series on immunodeficiency: molecular defects in common variable immunodeficiency. Clin Exp Immunol. 2007;149(3):401–9. https://doi.org/10.1111/j.1365-2249.2007.03461.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Karaca NE, Severcan EU, Guven B, Azarsiz E, Aksu G, Kutukculer N. TNFRSF13B/TACI alterations in Turkish patients with common variable immunodeficiency and IgA deficiency. Avicenna J Med Biotechnol. 2018;10(3):192–5.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wentink MW, Lambeck AJ, van Zelm MC, Simons E, van Dongen JJ. H IJ et al. CD21 and CD19 deficiency: two defects in the same complex leading to different disease modalities. Clin Immunol. 2015;161(2):120–7. https://doi.org/10.1016/j.clim.2015.08.010.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    van Zelm MC, Bartol SJ, Driessen GJ, Mascart F, Reisli I, Franco JL, et al. Human CD19 and CD40L deficiencies impair antibody selection and differentially affect somatic hypermutation. J Allergy Clin Immunol. 2014;134(1):135–44. https://doi.org/10.1016/j.jaci.2013.11.015.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJ, van Tol MJ, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12. https://doi.org/10.1056/NEJMoa051568.

    Article  PubMed  Google Scholar 

  27. 27.

    Artac H, Reisli I, Kara R, Pico-Knijnenburg I, Adin-Cinar S, Pekcan S, et al. B-cell maturation and antibody responses in individuals carrying a mutated CD19 allele. Genes Immun. 2010;11(7):523–30. https://doi.org/10.1038/gene.2010.22.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129(3):801–10.e6. https://doi.org/10.1016/j.jaci.2011.09.027.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74. https://doi.org/10.1172/jci39748.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kanzaki M, Lindorfer MA, Garrison JC, Kojima I. Activation of the calcium-permeable cation channel CD20 by alpha subunits of the Gi protein. J Biol Chem. 1997;272(23):14733–9. https://doi.org/10.1074/jbc.272.23.14733.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22. https://doi.org/10.1172/jci40231.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 2018;9:2285. https://doi.org/10.3389/fimmu.2018.02285.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Bohm J, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106(33):13945–50. https://doi.org/10.1073/pnas.0903543106.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130(2):481–8.e2. https://doi.org/10.1016/j.jaci.2012.05.043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001. https://doi.org/10.1016/j.ajhg.2012.04.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Burns SO, Zenner HL, Plagnol V, Curtis J, Mok K, Eisenhut M, et al. LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol. 2012;130(6):1428–32. https://doi.org/10.1016/j.jaci.2012.07.035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Charbonnier LM, Janssen E, Chou J, Ohsumi TK, Keles S, Hsu JT, et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol. 2015;135(1):217–27. https://doi.org/10.1016/j.jaci.2014.10.019.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40. https://doi.org/10.1126/science.aaa1663.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Fliegauf M, Bryant VL, Frede N, Slade C, Woon ST, Lehnert K, et al. Haploinsufficiency of the NF-kappaB1 subunit p50 in common variable immunodeficiency. Am J Hum Genet. 2015;97(3):389–403. https://doi.org/10.1016/j.ajhg.2015.07.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J. 2004;382(Pt 2):393–409. https://doi.org/10.1042/bj20040544.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sun SC. The noncanonical NF-kappaB pathway. Immunol Rev. 2012;246(1):125–40. https://doi.org/10.1111/j.1600-065X.2011.01088.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Quentien MH, Delemer B, Papadimitriou DT, Souchon PF, Jaussaud R, Pagnier A, et al. Deficit in anterior pituitary function and variable immune deficiency (DAVID) in children presenting with adrenocorticotropin deficiency and severe infections. J Clin Endocrinol Metab. 2012;97(1):E121–8. https://doi.org/10.1210/jc.2011-0407.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Chen K, Coonrod EM, Kumanovics A, Franks ZF, Durtschi JD, Margraf RL, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93(5):812–24. https://doi.org/10.1016/j.ajhg.2013.09.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lee CE, Fulcher DA, Whittle B, Chand R, Fewings N, Field M, et al. Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood. 2014;124(19):2964–72. https://doi.org/10.1182/blood-2014-06-578542.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Liu Y, Hanson S, Gurugama P, Jones A, Clark B, Ibrahim MA. Novel NFKB2 mutation in early-onset CVID. J Clin Immunol. 2014;34(6):686–90. https://doi.org/10.1007/s10875-014-0064-x.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408(6808):57–63. https://doi.org/10.1038/35040504.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Salzer E, Kansu A, Sic H, Majek P, Ikinciogullari A, Dogu FE, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol. 2014;133(6):1651–9.e12. https://doi.org/10.1016/j.jaci.2014.02.034.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Heizmann B, Kastner P, Chan S. Ikaros is absolutely required for pre-B cell differentiation by attenuating IL-7 signals. J Exp Med. 2013;210(13):2823–32. https://doi.org/10.1084/jem.20131735.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Goldman FD, Gurel Z, Al-Zubeidi D, Fried AJ, Icardi M, Song C, et al. Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene. Pediatr Blood Cancer. 2012;58(4):591–7. https://doi.org/10.1002/pbc.23160.

    Article  PubMed  Google Scholar 

  50. 50.

    •• Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N Engl J Med. 2016;374(11):1032–43. https://doi.org/10.1056/NEJMoa1512234. A large case series illustrating the clinical variability of presentations of IKAROS mutations.

  51. 51.

    • Keller MD, Pandey R, Li D, Glessner J, Tian L, Henrickson SE, et al. Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. J Allergy Clin Immunol. 2016;138(2):544–50.e4. https://doi.org/10.1016/j.jaci.2016.01.018. A newly-reported mutation causing the CVID phenotype.

  52. 52.

    Online Mendelian Inheritance in Man, OMIM® [database on the Internet]. McKusick-Nathans Institute of Genetic Medicine. Available from: https://omim.org.

Download references

Author information



Corresponding author

Correspondence to William K. Dolen.

Ethics declarations

Conflict of Interest

Drs. Gilchrist and Dolen declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Allergy and Immunology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilchrist, B., Dolen, W.K. B Cell Disorders in Children—Part I. Curr Allergy Asthma Rep 20, 52 (2020). https://doi.org/10.1007/s11882-020-00938-0

Download citation


  • B cell disorders
  • Antibody deficiency
  • Agammaglobulinemia
  • Common variable immunodeficiency
  • Immunodeficiency in children