The External Exposome and Food Allergy

Abstract

Purpose of Review

The recent increase in childhood food allergy prevalence strongly suggests that environmental exposures are contributing to food allergy development. This review summarizes current knowledge about the role of the external exposome in food allergy.

Recent Findings

There is growing evidence that environmental exposure to food antigens in house dust through non-oral routes contributes to food sensitization and allergy. Co-exposure to environmental adjuvants in house dust, such as microbial products and fungal allergens, may also facilitate allergic sensitization. While a high-microbe environment is associated with decreased atopy, studies are mixed on whether endotoxin exposure protects against food sensitization. Several chemicals and air pollutants have been associated with food sensitization, but their role in food allergy remains understudied.

Summary

Children are exposed to numerous environmental agents that can influence food allergy risk. Further studies are needed to identify the key early-life exposures that promote or inhibit food allergy development.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Gupta RS, Springston EE, Warrier MR, Smith B, Kumar R, Pongracic J, et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics. 2011;128(1):e9–17. https://doi.org/10.1542/peds.2011-0204.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gupta RS, Warren CM, Smith BM, Blumenstock JA, Jiang J, Davis MM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6). https://doi.org/10.1542/peds.2018-1235.

  3. 3.

    Sicherer SH, Sampson HA. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141(1):41–58. https://doi.org/10.1016/j.jaci.2017.11.003.

    CAS  Article  Google Scholar 

  4. 4.

    Jackson KD, Howie LD, Akinbami LJ. Trends in allergic conditions among children: United States, 1997-2011. NCHS Data Brief. 2013;(121):1–8.

  5. 5.

    Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol. 2010;125(6):1322–6. https://doi.org/10.1016/j.jaci.2010.03.029.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Neeland MR, Martino DJ, Allen KJ. The role of gene-environment interactions in the development of food allergy. Expert Rev Gastroenterol Hepatol. 2015;9(11):1371–8. https://doi.org/10.1586/17474124.2015.1084873.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. An exposome perspective: early-life events and immune development in a changing world. J Allergy Clin Immunol. 2017;140(1):24–40. https://doi.org/10.1016/j.jaci.2017.05.015.

    Article  PubMed  Google Scholar 

  8. 8.

    Burbank AJ, Sood AK, Kesic MJ, Peden DB, Hernandez ML. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017;140(1):1–12. https://doi.org/10.1016/j.jaci.2017.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847–50. https://doi.org/10.1158/1055-9965.epi-05-0456.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Agache I, Miller R, Gern JE, Hellings PW, Jutel M, Muraro A, et al. Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma: a Practall document. Allergy. 2019;74(3):449–63. https://doi.org/10.1111/all.13690.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014;69(9):876–8. https://doi.org/10.1136/thoraxjnl-2013-204949.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sheehan WJ, Taylor SL, Phipatanakul W, Brough HA. Environmental food exposure: what is the risk of clinical reactivity from cross-contact and what is the risk of sensitization. J Allergy Clin Immunol Pract. 2018;6(6):1825–32. https://doi.org/10.1016/j.jaip.2018.08.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Brough HA, Makinson K, Penagos M, Maleki SJ, Cheng H, Douiri A, et al. Distribution of peanut protein in the home environment. J Allergy Clin Immunol. 2013;132(3):623–9. https://doi.org/10.1016/j.jaci.2013.02.035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bertelsen RJ, Faeste CK, Granum B, Egaas E, London SJ, Carlsen KH, et al. Food allergens in mattress dust in Norwegian homes—a potentially important source of allergen exposure. Clin Exp Allergy. 2014;44(1):142–9. https://doi.org/10.1111/cea.12231.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Trendelenburg V, Tschirner S, Niggemann B, Beyer K. Hen’s egg allergen in house and bed dust is significantly increased after hen’s egg consumption—a pilot study. Allergy. 2018;73(1):261–4. https://doi.org/10.1111/all.13303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Sheehan WJ, Brough HA, Makinson K, Petty CR, Lack G, Phipatanakul W. Distribution of peanut protein in school and home environments of inner-city children. J Allergy Clin Immunol. 2017;140(6):1724–6. https://doi.org/10.1016/j.jaci.2017.05.042.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Brough HA, Santos AF, Makinson K, Penagos M, Stephens AC, Douiri A, et al. Peanut protein in household dust is related to household peanut consumption and is biologically active. J Allergy Clin Immunol. 2013;132(3):630–8. https://doi.org/10.1016/j.jaci.2013.02.034.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Brough HA, Mills ENC, Richards K, Lack G, Johnson PE. Mass spectrometry confirmation that clinically important peanut protein allergens are present in household dust. Allergy. 2020;75(3):709–12. https://doi.org/10.1111/all.14070.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Shroba J, Barnes C, Nanda M, Dinakar C, Ciaccio C. Ara h2 levels in dust from homes of individuals with peanut allergy and individuals with peanut tolerance. Allergy Asthma Proc. 2017;38(3):192–6. https://doi.org/10.2500/aap.2017.38.4049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124(11):4965–75. https://doi.org/10.1172/jci75660.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Dolence JJ, Kobayashi T, Iijima K, Krempski J, Drake LY, Dent AL, et al. Airway exposure initiates peanut allergy by involving the IL-1 pathway and T follicular helper cells in mice. J Allergy Clin Immunol. 2018;142(4):1144–58 e8. https://doi.org/10.1016/j.jaci.2017.11.020.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Dunkin D, Berin MC, Mayer L. Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. J Allergy Clin Immunol. 2011;128(6):1251–8.e2. https://doi.org/10.1016/j.jaci.2011.06.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Walker MT, Green JE, Ferrie RP, Queener AM, Kaplan MH, Cook-Mills JM. Mechanism for initiation of food allergy: dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol. 2018;141(5):1711–25 e9. https://doi.org/10.1016/j.jaci.2018.02.003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    • Smeekens JM, Immormino RM, Balogh PA, Randell SH, Kulis MD, Moran TP. Indoor dust acts as an adjuvant to promote sensitization to peanut through the airway. Clin Exp Allergy. 2019;49(11):1500–11. https://doi.org/10.1111/cea.13486. This study showed that exposure to environmental adjuvants in indoor dust can promote sensitization to environmental peanut in a mouse model.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kulis MD, Smeekens JM, Kavanagh K, Jorgensen MJ. Peanut applied to the skin of nonhuman primates induces antigen-specific IgG but not IgE. Immun Inflamm Dis. 2020. https://doi.org/10.1002/iid3.296.

  26. 26.

    Lack G, Fox D, Northstone K, Golding J, Avon Longitudinal Study of Parents and Children Study Team. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003;348(11):977–85. https://doi.org/10.1056/NEJMoa013536.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fox AT, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol. 2009;123(2):417–23. https://doi.org/10.1016/j.jaci.2008.12.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Brough HA, Simpson A, Makinson K, Hankinson J, Brown S, Douiri A, et al. Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol. 2014;134(4):867–75 e1. https://doi.org/10.1016/j.jaci.2014.08.011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Brough HA, Liu AH, Sicherer S, Makinson K, Douiri A, Brown SJ, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164–70. https://doi.org/10.1016/j.jaci.2014.10.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Brough HA, Kull I, Richards K, Hallner E, Soderhall C, Douiri A, et al. Environmental peanut exposure increases the risk of peanut sensitization in high-risk children. Clin Exp Allergy. 2018;48(5):586–93. https://doi.org/10.1111/cea.13111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803–13. https://doi.org/10.1056/NEJMoa1414850.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J, et al. Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med. 2016;374(18):1733–43. https://doi.org/10.1056/NEJMoa1514210.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    •• Perkin MR, Logan K, Bahnson HT, Marrs T, Radulovic S, Craven J, et al. Efficacy of the Enquiring About Tolerance (EAT) study among infants at high risk of developing food allergy. J Allergy Clin Immunol. 2019;144(6):1606–14.e2. https://doi.org/10.1016/j.jaci.2019.06.045. This secondary analysis of data from the EAT study showed that early introduction of foods was effective in preventing food allergy in high risk infants.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol. 2012;129(5):1187–97. https://doi.org/10.1016/j.jaci.2012.02.036.

    Article  Google Scholar 

  35. 35.

    Boasen J, Chisholm D, Lebet L, Akira S, Horner AA. House dust extracts elicit Toll-like receptor-dependent dendritic cell responses. J Allergy Clin Immunol. 2005;116(1):185–91. https://doi.org/10.1016/j.jaci.2005.03.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Van Dyken SJ, Garcia D, Porter P, Huang X, Quinlan PJ, Blanc PD, et al. Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. J Immunol. 2011;187(5):2261–7. https://doi.org/10.4049/jimmunol.1100972.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Porter P, Susarla SC, Polikepahad S, Qian Y, Hampton J, Kiss A, et al. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi. Mucosal Immunol. 2009;2(6):504–17. https://doi.org/10.1038/mi.2009.102.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ng N, Lam D, Paulus P, Batzer G, Horner AA. House dust extracts have both TH2 adjuvant and tolerogenic activities. J Allergy Clin Immunol. 2006;117(5):1074–81. https://doi.org/10.1016/j.jaci.2006.03.025.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wilson RH, Maruoka S, Whitehead GS, Foley JF, Flake GP, Sever ML, et al. The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nat Med. 2012;18(11):1705–10. https://doi.org/10.1038/nm.2920.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Moran TP, Nakano K, Whitehead GS, Thomas SY, Cook DN, Nakano H. Inhaled house dust programs pulmonary dendritic cells to promote type 2 T-cell responses by an indirect mechanism. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1208–18. https://doi.org/10.1152/ajplung.00256.2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Garcia-Boyano M, Pedrosa M, Quirce S, Boyano-Martinez T. Household almond and peanut consumption is related to the development of sensitization in young children. J Allergy Clin Immunol. 2016;137(4):1248–51 e6. https://doi.org/10.1016/j.jaci.2015.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Carlson G, Coop C. Pollen food allergy syndrome (PFAS): a review of current available literature. Ann Allergy Asthma Immunol. 2019;123(4):359–65. https://doi.org/10.1016/j.anai.2019.07.022.

    CAS  Article  Google Scholar 

  43. 43.

    Wang J, Calatroni A, Visness CM, Sampson HA. Correlation of specific IgE to shrimp with cockroach and dust mite exposure and sensitization in an inner-city population. J Allergy Clin Immunol. 2011;128(4):834–7. https://doi.org/10.1016/j.jaci.2011.07.045.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    McGowan EC, Peng R, Salo PM, Zeldin DC, Keet CA. Cockroach, dust mite, and shrimp sensitization correlations in the National Health and Nutrition Examination Survey. Ann Allergy Asthma Immunol. 2019;122(5):536–8 e1. https://doi.org/10.1016/j.anai.2019.02.015.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Crispell G, Commins SP, Archer-Hartman SA, Choudhary S, Dharmarajan G, Azadi P, et al. Discovery of alpha-gal-containing antigens in North American tick species believed to induce red meat allergy. Front Immunol. 2019;10:1056. https://doi.org/10.3389/fimmu.2019.01056.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010;10(12):861–8. https://doi.org/10.1038/nri2871.

    CAS  Article  Google Scholar 

  47. 47.

    Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869–77. https://doi.org/10.1056/NEJMoa020057.

    Article  Google Scholar 

  48. 48.

    Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, et al. Protection from childhood asthma and allergy in Alpine farm environments-the GABRIEL Advanced Studies. J Allergy Clin Immunol. 2012;129(6):1470–7.e6. https://doi.org/10.1016/j.jaci.2012.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. 2001;358(9288):1129–33. https://doi.org/10.1016/s0140-6736(01)06252-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375(5):411–21. https://doi.org/10.1056/NEJMoa1508749.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Deckers J, Lambrecht BN, Hammad H. How a farming environment protects from atopy. Curr Opin Immunol. 2019;60:163–9. https://doi.org/10.1016/j.coi.2019.08.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Campbell BE, Lodge CJ, Lowe AJ, Burgess JA, Matheson MC, Dharmage SC. Exposure to ‘farming’ and objective markers of atopy: a systematic review and meta-analysis. Clin Exp Allergy. 2015;45(4):744–57. https://doi.org/10.1111/cea.12429.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    • Phillips JT, Stahlhut RW, Looney RJ, Jarvinen KM. Food allergy, breastfeeding, and introduction of complementary foods in the New York Old Order Mennonite Community. Ann Allergy Asthma Immunol. 2020;124(3):292–4 e2. https://doi.org/10.1016/j.anai.2019.12.019. This recent study reported that food allergy rates in a community practicing traditional farming were lower in comparison to the general population.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gehring U, Bischof W, Fahlbusch B, Wichmann HE, Heinrich J. House dust endotoxin and allergic sensitization in children. Am J Respir Crit Care Med. 2002;166(7):939–44. https://doi.org/10.1164/rccm.200203-256OC.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Celedon JC, Milton DK, Ramsey CD, Litonjua AA, Ryan L, Platts-Mills TA, et al. Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood. J Allergy Clin Immunol. 2007;120(1):144–9. https://doi.org/10.1016/j.jaci.2007.03.037.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Karvonen AM, Hyvarinen A, Gehring U, Korppi M, Doekes G, Riedler J, et al. Exposure to microbial agents in house dust and wheezing, atopic dermatitis and atopic sensitization in early childhood: a birth cohort study in rural areas. Clin Exp Allergy. 2012;42(8):1246–56. https://doi.org/10.1111/j.1365-2222.2012.04002.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Bolte G, Bischof W, Borte M, Lehmann I, Wichmann HE, Heinrich J. Early endotoxin exposure and atopy development in infants: results of a birth cohort study. Clin Exp Allergy. 2003;33(6):770–6. https://doi.org/10.1046/j.1365-2222.2003.01665.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    McGowan EC, Bloomberg GR, Gergen PJ, Visness CM, Jaffee KF, Sandel M, et al. Influence of early-life exposures on food sensitization and food allergy in an inner-city birth cohort. J Allergy Clin Immunol. 2015;135(1):171–8. https://doi.org/10.1016/j.jaci.2014.06.033.

    Article  Google Scholar 

  59. 59.

    • Tsuang A, Grishin A, Grishina G, Do AN, Sordillo J, Chew GL, et al. Endotoxin, food allergen sensitization, and food allergy: A complementary epidemiologic and experimental study. Allergy. 2020;75(3):625–35. https://doi.org/10.1111/all.14054. This recent study found that household endotoxin levels were positively associated with sensitization to milk and egg, but not peanut.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Johnson-Weaver BT, McRitchie S, Mercier KA, Pathmasiri W, Sumner SJ, Chan C, et al. Effect of endotoxin and alum adjuvant vaccine on peanut allergy. J Allergy Clin Immunol. 2018;141(2):791–4.e8. https://doi.org/10.1016/j.jaci.2017.07.043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Dong T, Zhang Y, Jia S, Shang H, Fang W, Chen D, et al. Human indoor Exposome of Chemicals in Dust and Risk Prioritization Using EPA's ToxCast database. Environ Sci Technol. 2019;53(12):7045–54. https://doi.org/10.1021/acs.est.9b00280.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Roberts JW, Wallace LA, Camann DE, Dickey P, Gilbert SG, Lewis RG, et al. Monitoring and reducing exposure of infants to pollutants in house dust. Rev Environ Contam Toxicol. 2009;201:1–39. https://doi.org/10.1007/978-1-4419-0032-6_1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Nowak K, Jablonska E, Ratajczak-Wrona W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells. Environ Int. 2019;125:350–64. https://doi.org/10.1016/j.envint.2019.01.078.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Tobar S, Tordesillas L, Berin MC. Triclosan promotes epicutaneous sensitization to peanut in mice. Clin Transl Allergy. 2016;6:13. https://doi.org/10.1186/s13601-016-0102-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Hirota R, Ohya Y, Yamamoto-Hanada K, Fukutomi Y, Muto G, Ngatu NR, et al. Triclosan-induced alteration of gut microbiome and aggravation of asthmatic airway response in aeroallergen-sensitized mice. Allergy. 2019;74(5):996–9. https://doi.org/10.1111/all.13639.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Savage JH, Matsui EC, Wood RA, Keet CA. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allergy Clin Immunol. 2012;130(2):453–60 e7. https://doi.org/10.1016/j.jaci.2012.05.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Bertelsen RJ, Longnecker MP, Lovik M, Calafat AM, Carlsen KH, London SJ, et al. Triclosan exposure and allergic sensitization in Norwegian children. Allergy. 2013;68(1):84–91. https://doi.org/10.1111/all.12058.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lee-Sarwar K, Hauser R, Calafat AM, Ye X, O'Connor GT, Sandel M, et al. Prenatal and early-life triclosan and paraben exposure and allergic outcomes. J Allergy Clin Immunol. 2018;142(1):269–78 e15. https://doi.org/10.1016/j.jaci.2017.09.029.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Shiue I. Association of urinary arsenic, heavy metal, and phthalate concentrations with food allergy in adults: National Health and nutrition examination survey, 2005-2006. Ann Allergy Asthma Immunol. 2013;111(5):421–3. https://doi.org/10.1016/j.anai.2013.08.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    • Herberth G, Pierzchalski A, Feltens R, Bauer M, Roder S, Olek S, et al. Prenatal phthalate exposure associates with low regulatory T-cell numbers and atopic dermatitis in early childhood: results from the LINA mother-child study. J Allergy Clin Immunol. 2017;139(4):1376–9.e8. https://doi.org/10.1016/j.jaci.2016.09.034. This study found that exposure to phthalates during the prenatal period increased the risk for food sensitization in a large birth cohort.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Podlecka D, Gromadzinska J, Mikolajewska K, Fijalkowska B, Stelmach I, Jerzynska J. Longitudinal impact of phthalates exposure on allergic diseases in children. Ann Allergy Asthma Immunol. 2020. https://doi.org/10.1016/j.anai.2020.03.022.

  72. 72.

    Doherty BT, Hammel SC, Daniels JL, Stapleton HM, Hoffman K. Organophosphate esters: are these flame retardants and plasticizers affecting children’s health? CurrEnviron Health Rep. 2019;6(4):201–13. https://doi.org/10.1007/s40572-019-00258-0.

    CAS  Article  Google Scholar 

  73. 73.

    Stapleton HM, Misenheimer J, Hoffman K, Webster TF. Flame retardant associations between children’s handwipes and house dust. Chemosphere. 2014;116:54–60. https://doi.org/10.1016/j.chemosphere.2013.12.100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Phillips AL, Hammel SC, Hoffman K, Lorenzo AM, Chen A, Webster TF, et al. Children’s residential exposure to organophosphate ester flame retardants and plasticizers: investigating exposure pathways in the TESIE study. Environ Int. 2018;116:176–85. https://doi.org/10.1016/j.envint.2018.04.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Canbaz D, Logiantara A, van Ree R, van Rijt LS. Immunotoxicity of organophosphate flame retardants TPHP and TDCIPP on murine dendritic cells in vitro. Chemosphere. 2017;177:56–64. https://doi.org/10.1016/j.chemosphere.2017.02.149.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Araki A, Saito I, Kanazawa A, Morimoto K, Nakayama K, Shibata E, et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor Air. 2014;24(1):3–15. https://doi.org/10.1111/ina.12054.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Araki A, Bastiaensen M, Ait Bamai Y, Van den Eede N, Kawai T, Tsuboi T, et al. Associations between allergic symptoms and phosphate flame retardants in dust and their urinary metabolites among school children. Environ Int. 2018;119:438–46. https://doi.org/10.1016/j.envint.2018.07.018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Peden DB. The “envirome” and what the practitioner needs to know about it. Ann Allergy Asthma Immunol. 2019;123(6):542–9. https://doi.org/10.1016/j.anai.2019.09.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Diaz-Sanchez D, Garcia MP, Wang M, Jyrala M, Saxon A. Nasal challenge with diesel exhaust particles can induce sensitization to a neoallergen in the human mucosa. J Allergy Clin Immunol. 1999;104(6):1183–8. https://doi.org/10.1016/s0091-6749(99)70011-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Takafuji S, Suzuki S, Koizumi K, Tadokoro K, Miyamoto T, Ikemori R, et al. Diesel-exhaust particulates inoculated by the intranasal route have an adjuvant activity for IgE production in mice. J Allergy Clin Immunol. 1987;79(4):639–45. https://doi.org/10.1016/s0091-6749(87)80161-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Gold MJ, Hiebert PR, Park HY, Stefanowicz D, Le A, Starkey MR, et al. Mucosal production of uric acid by airway epithelial cells contributes to particulate matter-induced allergic sensitization. Mucosal Immunol. 2016;9(3):809–20. https://doi.org/10.1038/mi.2015.104.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hollingsworth JW, Free ME, Li Z, Andrews LN, Nakano H, Cook DN. Ozone activates pulmonary dendritic cells and promotes allergic sensitization through a toll-like receptor 4-dependent mechanism. J Allergy Clin Immunol. 2010;125(5):1167–70. https://doi.org/10.1016/j.jaci.2010.03.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Mutlu EA, Comba IY, Cho T, Engen PA, Yazici C, Soberanes S, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018;240:817–30. https://doi.org/10.1016/j.envpol.2018.04.130.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 2011;8:19. https://doi.org/10.1186/1743-8977-8-19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Hidaka T, Ogawa E, Kobayashi EH, Suzuki T, Funayama R, Nagashima T, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18(1):64–73. https://doi.org/10.1038/ni.3614.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Brauer M, Hoek G, Smit HA, de Jongste JC, Gerritsen J, Postma DS, et al. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur Respir J. 2007;29(5):879–88. https://doi.org/10.1183/09031936.00083406.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Gruzieva O, Bellander T, Eneroth K, Kull I, Melen E, Nordling E, et al. Traffic-related air pollution and development of allergic sensitization in children during the first 8 years of life. J Allergy Clin Immunol. 2012;129(1):240–6. https://doi.org/10.1016/j.jaci.2011.11.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Sbihi H, Allen RW, Becker A, Brook JR, Mandhane P, Scott JA, et al. Perinatal exposure to traffic-related air pollution and atopy at 1 year of age in a multi-center Canadian birth cohort study. Environ Health Perspect. 2015;123(9):902–8. https://doi.org/10.1289/ehp.1408700.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Sordillo JE, Rifas-Shiman SL, Switkowski K, Coull B, Gibson H, Rice M, et al. Prenatal oxidative balance and risk of asthma and allergic disease in adolescence. J Allergy Clin Immunol. 2019;144(6):1534–41 e5. https://doi.org/10.1016/j.jaci.2019.07.044.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–56. https://doi.org/10.1111/all.12561.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, et al. The health effects of non-industrial indoor air pollution. J Allergy Clin Immunol. 2008;121(3):585–91. https://doi.org/10.1016/j.jaci.2007.10.045.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Kulig M, Luck W, Lau S, Niggemann B, Bergmann R, Klettke U, et al. Effect of pre- and postnatal tobacco smoke exposure on specific sensitization to food and inhalant allergens during the first 3 years of life. Multicenter Allergy Study Group, Germany. Allergy. 1999;54(3):220–8. https://doi.org/10.1034/j.1398-9995.1999.00753.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Lannero E, Wickman M, van Hage M, Bergstrom A, Pershagen G, Nordvall L. Exposure to environmental tobacco smoke and sensitisation in children. Thorax. 2008;63(2):172–6. https://doi.org/10.1136/thx.2007.079053.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Thacher JD, Gruzieva O, Pershagen G, Neuman A, van Hage M, Wickman M, et al. Parental smoking and development of allergic sensitization from birth to adolescence. Allergy. 2016;71(2):239–48. https://doi.org/10.1111/all.12792.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Saulyte J, Regueira C, Montes-Martinez A, Khudyakov P, Takkouche B. Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med. 2014;11(3):e1001611. https://doi.org/10.1371/journal.pmed.1001611.

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Yu M, Mukai K, Tsai M, Galli SJ. Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. J Allergy Clin Immunol. 2018;142(5):1618–27.e9. https://doi.org/10.1016/j.jaci.2018.04.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Moran.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Allergies and the Environment

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moran, T.P. The External Exposome and Food Allergy. Curr Allergy Asthma Rep 20, 37 (2020). https://doi.org/10.1007/s11882-020-00936-2

Download citation

Keywords

  • Food allergy
  • Exposome
  • Environment
  • Air pollution
  • Exposure
  • House dust