Skip to main content
Log in

Allergen Component Testing in the Diagnosis of Food Allergy

  • Food Allergy (T Green, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

IgE-mediated food allergies are an important public health problem, affecting 5 % of adults and 8 % of children, with numerous studies indicating that the prevalence is increasing. Food allergic reactions can range in severity from mild to severe and life threatening. Accurate diagnosis of food allergy is necessary not only to provide appropriate and potentially life-saving preventive measures but also to prevent unwarranted dietary restrictions. The diagnosis of food allergy has traditionally been based on clinical history and food specific IgE (sIgE) testing, including skin prick testing (SPT), serum tests, or both. These tests tend to be extremely sensitive, but positive test results to foods that are tolerated are common. Studies of allergen component-resolved diagnostics (CRD) show that adjuvant use of this modality may provide a more accurate assessment in the diagnosis of food allergy, though the reported benefits are questionable for a number of major allergens. Furthermore, diagnostic cutoff values have been difficult to determine for allergens where component testing has been demonstrated to be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Boyce JA, Assa’ad A, Burks AW, et al. Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. J Allergy Clin Immunol. 2010;126(6):1105–18.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133(2):291–307.

    Article  CAS  PubMed  Google Scholar 

  3. Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124(6):1549–55.

    Article  PubMed  Google Scholar 

  4. Sicherer SH, Munoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol. 2010;125(6):1322–6.

    Article  CAS  PubMed  Google Scholar 

  5. Sampson HA, Aceves S, Bock SA, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014;134(5):1016–25. A comprehensive practice parameter developed by the Joint Task Force on Practice Parameters covering a wide range of topics related to food allergy.

    Article  PubMed  Google Scholar 

  6. Valenta R, Lidholm J, Niederberger V, Hayek B, et al. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy. 1999;29(7):896–904.

    Article  CAS  PubMed  Google Scholar 

  7. Skripak JM, Matsui EC, Mudd K, Wood RA. The natural history of IgE-mediated cow’s milk allergy. J Allergy Clin Immunol. 2007;120(5):1172–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ott H, Baron JM, Heise R, et al. Clinical usefulness of microarray-based IgE detection in children with suspected food allergy. Allergy. 2008;63(11):1521–8.

    Article  CAS  PubMed  Google Scholar 

  9. D’Urbano LE, Pellegrino K, Artesani MC, et al. Performance of a component-based allergen-microarray in the diagnosis of cow’s milk and hen’s egg allergy. Clin Exp Allergy. 2010;40(10):1561–70.

    Article  PubMed  Google Scholar 

  10. Wal JM. Bovine milk allergenicity. Ann Allergy Asthma Immunol. 2004;93(5 Suppl 3):S2–11.

    Article  CAS  PubMed  Google Scholar 

  11. Ito K, Futamura M, Moverare R, et al. The usefulness of casein-specific IgE and IgG4 antibodies in cow’s milk allergic children. Clin Mol Allergy. 2012;10:1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Nowak-Wegrzyn A, Bloom KA, Sicherer SH, et al. Tolerance to extensively heated milk in children with cow’s milk allergy. J Allergy Clin Immunol. 2008;122(2):342–7.

    Article  PubMed  Google Scholar 

  13. Caubet JC, Nowak-Wegrzyn A, Moshier E, et al. Utility of casein-specific IgE levels in predicting reactivity to baked milk. J Allergy Clin Immunol. 2013;131(1):222–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jarvinen KM, Beyer K, Vila L, et al. B-cell epitopes as a screening instrument for persistent cow’s milk allergy. J Allergy Clin Immunol. 2002;110(2):293–7.

    Article  CAS  PubMed  Google Scholar 

  15. Sicherer SH, Sampson HA. Food allergy. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S116–25.

    Article  PubMed  Google Scholar 

  16. Lemon-Mule H, Sampson HA, Sicherer SH, et al. Immunologic changes in children with egg allergy ingesting extensively heated egg. J Allergy Clin Immunol. 2008;122(5):977–83.

    Article  CAS  PubMed  Google Scholar 

  17. Alessandri C, Zennaro D, Scala E, et al. Ovomucoid (Gal d 1) specific IgE detected by microarray system predict tolerability to boiled hen’s egg and an increased risk to progress to multiple environmental allergen sensitisation. Clin Exp Allergy. 2012;42(3):441–50.

    Article  CAS  PubMed  Google Scholar 

  18. Ando H, Moverare R, Kondo Y, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol. 2008;122(3):583–8.

    Article  CAS  PubMed  Google Scholar 

  19. Bartnikas LM, Sheehan WJ, Larabee KS, et al. Ovomucoid is not superior to egg white testing in predicting tolerance to baked egg. J Allergy Clin Immunol Pract. 2013;1(4):354–60.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Savage JH, Kaeding AJ, Matsui EC, Wood RA. The natural history of soy allergy. J Allergy Clin Immunol. 2010;125(3):683–6.

    Article  CAS  PubMed  Google Scholar 

  21. Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001;107(5):891–6.

    Article  CAS  PubMed  Google Scholar 

  22. Magnolfi CF, Zani G, Lacava L, et al. Soy allergy in atopic children. Ann Allergy Asthma Immunol. 1996;77(3):197–201.

    Article  CAS  PubMed  Google Scholar 

  23. Ito K, Sjolander S, Sato S, et al. IgE to Gly m 5 and Gly m 6 is associated with severe allergic reactions to soybean in Japanese children. J Allergy Clin Immunol. 2011;128(3):673–5.

    Article  CAS  PubMed  Google Scholar 

  24. Ebisawa M, Brostedt P, Sjolander S, et al. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean-allergic children. J Allergy Clin Immunol. 2013;132(4):976–8.

    Article  CAS  PubMed  Google Scholar 

  25. Klemans RJ, Knol EF, Michelsen-Huisman A, et al. Components in soy allergy diagnostics: Gly m 2S albumin has the best diagnostic value in adults. Allergy. 2013;68(11):1396–402.

    Article  CAS  PubMed  Google Scholar 

  26. Holzhauser T, Wackermann O, Ballmer-Weber BK, et al. Soybean (glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol. 2009;123(2):452–8.

    Article  CAS  PubMed  Google Scholar 

  27. Berneder M, Bublin M, Hoffmann-Sommergruber K, et al. Allergen chip diagnosis for soy-allergic patients: Gly m 4 as a marker for severe food-allergic reactions to soy. Int Arch Allergy Immunol. 2013;161(3):229–33.

    Article  CAS  PubMed  Google Scholar 

  28. Bunyavanich S, Rifas-Shiman SL, Platts-Mills TA, et al. Peanut allergy prevalence among school-age children in a US cohort not selected for any disease. J Allergy Clin Immunol. 2014;134(3):753–5.

    Article  PubMed  Google Scholar 

  29. Skolnick HS, Conover-Walker MK, Koerner CB, et al. The natural history of peanut allergy. J Allergy Clin Immunol. 2001;107(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  30. Sicherer SH, Wood RA. Advances in diagnosing peanut allergy. J Allergy Clin Immunol Pract. 2013;1(1):1–13. Review of diagnostics for peanut allergy that provides helpful guidance to clinical practitioners regarding when it is likely to be beneficial to obtain component testing in the evaluation of peanut allergy.

    Article  PubMed  Google Scholar 

  31. Lieberman JA, Sicherer SH. Quality of life in food allergy. Curr Opin Allergy Clin Immunol. 2011;11(3):236–42.

    Article  CAS  PubMed  Google Scholar 

  32. Nicolaou N, Poorafshar M, Murray C, et al. Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol. 2010;125(1):191–7.

    Article  CAS  PubMed  Google Scholar 

  33. Eller E, Bindslev-Jensen C. Clinical value of component-resolved diagnostics in peanut-allergic patients. Allergy. 2013;68(2):190–4.

    Article  CAS  PubMed  Google Scholar 

  34. Lieberman JA, Glaumann S, Batelson S, et al. The utility of peanut components in the diagnosis of IgE-mediated peanut allergy among distinct populations. J Allergy Clin Immunol Pract. 2013;1(1):75–82.

    Article  PubMed  Google Scholar 

  35. Dang TD, Tang M, Choo S, et al. Increasing the accuracy of peanut allergy diagnosis by using Ara h 2. J Allergy Clin Immunol. 2012;129(4):1056–63.

    Article  CAS  PubMed  Google Scholar 

  36. Klemans RJ, Broekman HC, Knol EF, et al. Ara h 2 is the best predictor for peanut allergy in adults. J Allergy Clin Immunol Pract. 2013;1(6):632–8.

    Article  PubMed  Google Scholar 

  37. Koppelman SJ, Wensing M, Ertmann M, et al. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy. 2004;34(4):583–90.

    Article  CAS  PubMed  Google Scholar 

  38. Vereda A, van Hage M, Ahlstedt S, et al. Peanut allergy: clinical and immunologic differences among patients from 3 different geographic regions. J Allergy Clin Immunol. 2011;127(3):603–7.

    Article  CAS  PubMed  Google Scholar 

  39. Beyer K, Ellman-Grunther L, Jarvinen KM, et al. Measurement of peptide-specific IgE as an additional tool in identifying patients with clinical reactivity to peanuts. J Allergy Clin Immunol. 2003;112(1):202–7.

    Article  CAS  PubMed  Google Scholar 

  40. Flinterman AE, Knol EF, Lencer DA, et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. J Allergy Clin Immunol. 2008;121(3):737–43.

    Article  CAS  PubMed  Google Scholar 

  41. Asarnoj A, Nilsson C, Lidholm J, et al. Peanut component Ara h 8 sensitization and tolerance to peanut. J Allergy Clin Immunol. 2012;130(2):468–72.

    Article  CAS  PubMed  Google Scholar 

  42. Beyer K, Grabenhenrich L, Hartl M, et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy. 2015;70(1):90–8.

    Article  CAS  PubMed  Google Scholar 

  43. Keet CA, Johnson K, Savage JH, et al. Evaluation of Ara h2 IgE thresholds in the diagnosis of peanut allergy in a clinical population. J Allergy Clin Immunol Pract. 2013;1(1):101–3.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Roehr CC, Edenharter G, Reimann S, et al. Food allergy and non-allergic food hypersensitivity in children and adolescents. Clin Exp Allergy. 2004;34(10):1534–41.

    Article  CAS  PubMed  Google Scholar 

  45. Osterballe M, Mortz CG, Hansen TK, et al. The prevalence of food hypersensitivity in young adults. Pediatr Allergy Immunol. 2009;20(7):686–92.

    Article  CAS  PubMed  Google Scholar 

  46. De Knop KJ, Verweij MM, Grimmelikhuijsen M, et al. Age-related sensitization profiles for hazelnut (Corylus avellana) in a birch-endemic region. Pediatr Allergy Immunol. 2011;22(1 Pt 2):e139–49.

    Article  PubMed  Google Scholar 

  47. Flinterman AE, Akkerdaas JH, Knulst AC, et al. Hazelnut allergy: from pollen-associated mild allergy to severe anaphylactic reactions. Curr Opin Allergy Clin Immunol. 2008;8(3):261–5.

    Article  CAS  PubMed  Google Scholar 

  48. Masthoff LJ, Pasmans SG, van Hoffen E, et al. Diagnostic value of hazelnut allergy tests including rCor a 1 spiking in double-blind challenged children. Allergy. 2012;67(4):521–7.

    Article  CAS  PubMed  Google Scholar 

  49. Pastorello EA, Vieths S, Pravettoni V, et al. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol. 2002;109(3):563–70.

    Article  PubMed  Google Scholar 

  50. Hansen KS, Ballmer-Weber BK, Sastre J, et al. Component-resolved in vitro diagnosis of hazelnut allergy in Europe. J Allergy Clin Immunol. 2009;123(5):1134–41.

    Article  CAS  PubMed  Google Scholar 

  51. Masthoff LJ, Mattsson L, Zuidmeer-Jongejan L, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. J Allergy Clin Immunol. 2013;132(2):393–9. While traditional IgE testing for hazelnut allergy has a high rate of false-positive results, this study demonstrated improved accuracy with the use of the components Cor a 9 and Cor a 14.

    Article  CAS  PubMed  Google Scholar 

  52. Schocker F, Luttkopf D, Scheurer S, et al. Recombinant lipid transfer protein Cor a 8 from hazelnut: a new tool for in vitro diagnosis of potentially severe hazelnut allergy. J Allergy Clin Immunol. 2004;113(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kattan JD, Sicherer SH, Sampson HA. Clinical reactivity to hazelnut may be better identified by component testing than traditional testing methods. J Allergy Clin Immunol Pract. 2014;2(5):633–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Mount Sinai K12 Research Career Development Program in Emergency Medicine through the NIH/National Heart, Lung & Blood Institute (5K12HL109005-04).

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Schussler.

Additional information

This article is part of the Topical Collection on Food Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schussler, E., Kattan, J. Allergen Component Testing in the Diagnosis of Food Allergy. Curr Allergy Asthma Rep 15, 55 (2015). https://doi.org/10.1007/s11882-015-0554-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0554-9

Keywords

Navigation