Skip to main content

Advertisement

Log in

Review of Environmental Impact on the Epigenetic Regulation of Atopic Diseases

  • Food Allergy (T Green, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

There has been significant increase in the prevalence of atopy over the past decade that cannot be explained by genetic predisposition. Environmental factors including nutrition, the uterine environment, and lifestyle factors are known to play a role in gene expression through epigenetic modifications. In this article, we review the literature on the environmental impact on epigenetic modulation of atopic diseases including asthma, food allergy, eczema, and allergic rhinitis. Recent public release of epigenomic data for hundreds of human tissues provides a powerful resource for further investigation of the molecular basis of atopic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jurakic Toncic R, Marinovic B. What is new and hot in genetics of human atopic dermatitis: shifting paradigms in the landscape of allergic skin diseases. Acta Dermatovenerol Croat ADC. 2014;22(4):313–5.

    Google Scholar 

  2. Prescott SL. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol. 2013;131(1):23–30. Good article regarding importance of early life environmental factors on allergic disease.

    CAS  PubMed  Google Scholar 

  3. Runyon RS, Cachola LM, Rajeshuni N, Hunter T, Garcia M, Ahn R, et al. Asthma discordance in twins is linked to epigenetic modifications of T cells. PLoS One. 2012;7(11), e48796.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Stefanowicz D, Hackett TL, Garmaroudi FS, Gunther OP, Neumann S, Sutanto EN, et al. DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children. PLoS One. 2012;7(9), e44213.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Soto-Ramirez N, Arshad SH, Holloway JW, Zhang H, Schauberger E, Ewart S, et al. The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 years. Clin Epigenetics. 2013;5(1):1.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, Carey V, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One. 2014;9(6), e99716.

    PubMed Central  PubMed  Google Scholar 

  7. Morales E, Bustamante M, Vilahur N, Escaramis G, Montfort M, de Cid R, et al. DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. Am J Respir Crit Care Med. 2012;185(9):937–43.

    CAS  PubMed  Google Scholar 

  8. Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, et al. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4(2), e4488.

    PubMed Central  PubMed  Google Scholar 

  9. Fu A, Leaderer BP, Gent JF, Leaderer D, Zhu Y. An environmental epigenetic study of ADRB2 5'-UTR methylation and childhood asthma severity. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2012;42(11):1575–81.

    CAS  Google Scholar 

  10. Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39(1):48–53.

    CAS  PubMed  Google Scholar 

  11. Isidoro-Garcia M, Sanz C, Garcia-Solaesa V, Pascual M, Pescador DB, Lorente F, et al. PTGDR gene in asthma: a functional, genetic, and epigenetic study. Allergy. 2011;66(12):1553–62.

    CAS  PubMed  Google Scholar 

  12. Pascual M, Suzuki M, Isidoro-Garcia M, Padron J, Turner T, Lorente F, et al. Epigenetic changes in B lymphocytes associated with house dust mite allergic asthma. Epigenetics Off J DNA Methylation Soc. 2011;6(9):1131–7.

    CAS  Google Scholar 

  13. Kim YJ, Park SW, Kim TH, Park JS, Cheong HS, Shin HD, et al. Genome-wide methylation profiling of the bronchial mucosa of asthmatics: relationship to atopy. BMC Med Genet. 2013;14:39.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Reinius LE, Gref A, Saaf A, Acevedo N, Joerink M, Kupczyk M, et al. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors. PLoS One. 2013;8(1), e53877.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, et al. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy. 2013;68(3):355–64.

    CAS  PubMed  Google Scholar 

  17. Slaats GG, Reinius LE, Alm J, Kere J, Scheynius A, Joerink M. DNA methylation levels within the CD14 promoter region are lower in placentas of mothers living on a farm. Allergy. 2012;67(7):895–903.

    CAS  PubMed  Google Scholar 

  18. Kohli A, Garcia MA, Miller RL, Maher C, Humblet O, Hammond SK, et al. Secondhand smoke in combination with ambient air pollution exposure is associated with increasedx CpG methylation and decreased expression of IFN-gamma in T effector cells and Foxp3 in T regulatory cells in children. Clin Epigenetics. 2012;4(1):17.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Tang WY, Levin L, Talaska G, Cheung YY, Herbstman J, Tang D, et al. Maternal exposure to polycyclic aromatic hydrocarbons and 5'-CpG methylation of interferon-gamma in cord white blood cells. Environ Health Perspect. 2012;120(8):1195–200.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Rossnerova A, Tulupova E, Tabashidze N, Schmuczerova J, Dostal M, Rossner Jr P, et al. Factors affecting the 27K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutat Res. 2013;741–742:18–26.

    PubMed  Google Scholar 

  21. Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126(4):845–52. e10.

    CAS  PubMed  Google Scholar 

  22. Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environ Health Perspect. 2012;120(9):1320–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H, et al. Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol. 2013;131(2):592–4. e1-3.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect. 2009;117(2):217–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Munthe-Kaas MC, Bertelsen RJ, Torjussen TM, Hjorthaug HS, Undlien DE, Lyle R, et al. Pet keeping and tobacco exposure influence CD14 methylation in childhood. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2012;23(8):747–54.

    Google Scholar 

  26. Miozzo M, Vaira V, Sirchia SM. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol (London, England). 2015;11(2):333–48.

    CAS  Google Scholar 

  27. Sharon Chinthrajah KV, Morvarid Tavassoli, Kari CNadeau, Global Atlas of Allergy 2014.

  28. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res. 2005;33(20), e176.

    PubMed Central  PubMed  Google Scholar 

  29. Szulwach KE, Jin P. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. BioEssays News Rev Mol Cell Dev Biol. 2014;36(1):107–17.

    CAS  Google Scholar 

  30. Holliday R. DNA methylation and epigenetic inheritance. Philos Trans R Soc Lond Ser B Biol Sci. 1990;326(1235):329–38.

    CAS  Google Scholar 

  31. Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol. 2015;135(1):15–24. A recent article about different environmental factors effecting epigenetics in allergic disease.

    CAS  PubMed  Google Scholar 

  32. Weissmann F, Lyko F. Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture. BioEssays News Rev Mol Cell Dev Biol. 2003;25(8):792–7.

    CAS  Google Scholar 

  33. Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res. 2015;27(2):172–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Dan J, Yang J, Liu Y, Xiao A, Liu L. Roles for histone acetylation in regulation of telomere elongation and two-cell state in mouse es cells. J Cell Physiol. 2015.

  35. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Tsuji G, Okiyama N, Villarroel VA, Katz SI. Histone deacetylase 6 inhibition impairs effector CD8 T-cell functions during skin inflammation. J Allergy Clin Immunol. 2014.

  37. Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao A. T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol. 2002;3(7):643–51.

    CAS  PubMed  Google Scholar 

  38. Wang JW, Li K, Hellermann G, Lockey RF, Mohapatra S, Mohapatra S. Regulating the regulators: microRNA and asthma. World Allergy Organ J. 2011;4(6):94–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Davalos V, Esteller M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol. 2010;22(1):35–45.

    CAS  PubMed  Google Scholar 

  40. Saito Y, Saito H, Liang G, Friedman JM. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clin Rev Allergy Immunol. 2014;47(2):128–35.

    CAS  PubMed  Google Scholar 

  41. Robinson DS. The role of the T cell in asthma. J Allergy Clin Immunol. 2010;126(6):1081–91. quiz 92–3.

    CAS  PubMed  Google Scholar 

  42. Lovinsky-Desir S, Ridder R, Torrone D, Maher C, Narula S, Scheuerman M, et al. DNA methylation of the allergy regulatory gene interferon gamma varies by age, sex, and tissue type in asthmatics. Clin Epigenetics. 2014;6(1):9.

    PubMed Central  PubMed  Google Scholar 

  43. Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GATA-3 function in innate and adaptive immunity. Immunity. 2014;41(2):191–206.

    CAS  PubMed  Google Scholar 

  44. Kwon NH, Kim JS, Lee JY, Oh MJ, Choi DC. DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol. 2008;28(2):139–46.

    CAS  PubMed  Google Scholar 

  45. Scheinman EJ, Avni O. Transcriptional regulation of GATA3 in T helper cells by the integrated activities of transcription factors downstream of the interleukin-4 receptor and T cell receptor. J Biol Chem. 2009;284(5):3037–48.

    CAS  PubMed  Google Scholar 

  46. Begin P, Nadeau KC. Epigenetic regulation of asthma and allergic disease. Allergy Asthma Clin Immunol Off J Can Soc Allergy Clin Immunol. 2014;10(1):27. Very good review of articles about various epigenetic mechanisms in asthma and allergic disease.

    Google Scholar 

  47. Zhang Y, Maksimovic J, Naselli G, Qian J, Chopin M, Blewitt ME, et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood. 2013;122(16):2823–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Passerini L, Santoni de Sio FR, Roncarolo MG, Bacchetta R. Forkhead box P3: the peacekeeper of the immune system. Int Rev Immunol. 2014;33(2):129–45.

    CAS  PubMed  Google Scholar 

  49. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463(7282):808–12. Good article regarding importance of Foxp3 on regulatory T cell.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007;204(7):1543–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ogawa C, Tone Y, Tsuda M, Peter C, Waldmann H, Tone M. TGF-beta-mediated Foxp3 gene expression is cooperatively regulated by Stat5, Creb, and AP-1 through CNS2. J Immunol (Baltimore, Md : 1950). 2014;192(1):475–83.

    CAS  PubMed Central  Google Scholar 

  52. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008;38(6):1654–63.

    CAS  PubMed  Google Scholar 

  53. Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 2014;158(4):749–63.

    CAS  PubMed  Google Scholar 

  54. Lim RH, Kobzik L, Dahl M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One. 2010;5(4), e10134.

    PubMed Central  PubMed  Google Scholar 

  55. Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Investig. 2008;118(10):3462–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Prescott S, Saffery R. The role of epigenetic dysregulation in the epidemic of allergic disease. Clin Epigenetics. 2011;2(2):223–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Schaub B, Liu J, Hoppler S, Schleich I, Huehn J, Olek S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol. 2009;123(4):774–82. e5.

    CAS  PubMed  Google Scholar 

  58. Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2005;35(12):1511–20.

    CAS  Google Scholar 

  59. Schroder PC, Li J, Wong GW, Schaub B. The rural–urban enigma of allergy: what can we learn from studies around the world? Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2015;26(2):95–102.

    Google Scholar 

  60. Horak E, Morass B, Ulmer H, Genuneit J, Braun-Fahrlander C, von Mutius E. Prevalence of wheezing and atopic diseases in Austrian schoolchildren in conjunction with urban, rural or farm residence. Wien Klin Wochenschr. 2014;126(17–18):532–6.

    PubMed  Google Scholar 

  61. Genuneit J. Exposure to farming environments in childhood and asthma and wheeze in rural populations: a systematic review with meta-analysis. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2012;23(6):509–18.

    Google Scholar 

  62. Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, et al. Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014;133(2):551–9.

    CAS  PubMed  Google Scholar 

  63. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Acevedo N, Reinius LE, Greco D, Gref A, Orsmark-Pietras C, Persson H, et al. Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus. Hum Mol Genet. 2015;24(3):875–90.

    PubMed Central  PubMed  Google Scholar 

  65. Brauner EV, Loft S, Raaschou-Nielsen O, Vogel U, Andersen PS, Sorensen M. Effects of a 17q21 chromosome gene variant, tobacco smoke and furred pets on infant wheeze. Genes Immun. 2012;13(1):94–7.

    CAS  PubMed  Google Scholar 

  66. Schieck M, Sharma V, Michel S, Toncheva AA, Worth L, Potaczek DP, et al. A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy. 2014;69(9):1171–80.

    CAS  PubMed  Google Scholar 

  67. Leavy O. Asthma and allergy: prenatal protection through TLRs. Nat Rev Immunol. 2010;10(1):8–9.

    CAS  Google Scholar 

  68. Conrad ML, Ferstl R, Teich R, Brand S, Blumer N, Yildirim AO, et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med. 2009;206(13):2869–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Brand S, Teich R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol. 2011;128(3):618–25. e1-7.

    CAS  PubMed  Google Scholar 

  70. Turunen R, Koistinen A, Vuorinen T, Arku B, Soderlund-Venermo M, Ruuskanen O, et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2014;25(8):796–803.

    Google Scholar 

  71. McErlean P, Favoreto Jr S, Costa FF, Shen J, Quraishi J, Biyasheva A, et al. Human rhinovirus infection causes different DNA methylation changes in nasal epithelial cells from healthy and asthmatic subjects. BMC Med Genet. 2014;7:37.

    Google Scholar 

  72. Orivuori L, Loss G, Roduit C, Dalphin JC, Depner M, Genuneit J, et al. Soluble immunoglobulin A in breast milk is inversely associated with atopic dermatitis at early age: the PASTURE cohort study. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2014;44(1):102–12.

    CAS  Google Scholar 

  73. Foolad N, Brezinski EA, Chase EP, Armstrong AW. Effect of nutrient supplementation on atopic dermatitis in children: a systematic review of probiotics, prebiotics, formula, and fatty acids. JAMA Dermatol. 2013;149(3):350–5.

    CAS  PubMed  Google Scholar 

  74. Elazab N, Mendy A, Gasana J, Vieira ER, Quizon A, Forno E. Probiotic administration in early life, atopy, and asthma: a meta-analysis of clinical trials. Pediatrics. 2013;132(3):e666–76.

    PubMed  Google Scholar 

  75. Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K, Al-Hammadi S, Agarwal A, et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): probiotics. World Allergy Organ J. 2015;8(1):4.

    PubMed Central  PubMed  Google Scholar 

  76. Berni Canani R, Nocerino R, Terrin G, Coruzzo A, Cosenza L, Leone L, et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J Allergy Clin Immunol. 2012;129(2):580–2. 2.e1-5.

    PubMed  Google Scholar 

  77. Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G. Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy. 2011;66(4):499–508.

    CAS  PubMed  Google Scholar 

  78. Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol. 2015;135(3):737–44.

    CAS  PubMed  Google Scholar 

  79. Molter A, Agius RM, de Vocht F, Lindley S, Gerrard W, Lowe L, et al. Long-term exposure to PM10 and NO2 in association with lung volume and airway resistance in the MAAS birth cohort. Environ Health Perspect. 2013;121(10):1232–8.

    PubMed Central  PubMed  Google Scholar 

  80. Klingbeil EC, Hew KM, Nygaard UC, Nadeau KC. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma. Immunol Res. 2014;58(2–3):369–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Gaffin JM, Kanchongkittiphon W, Phipatanakul W. Perinatal and early childhood environmental factors influencing allergic asthma immunopathogenesis. Int Immunopharmacol. 2014;22(1):21–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Burke H, Leonardi-Bee J, Hashim A, Pine-Abata H, Chen Y, Cook DG, et al. Prenatal and passive smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediatrics. 2012;129(4):735–44.

    PubMed  Google Scholar 

  83. Rehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med. 2012;10:129.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Li YF, Langholz B, Salam MT, Gilliland FD. Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest. 2005;127(4):1232–41.

    PubMed  Google Scholar 

  85. Murphy SK, Hollingsworth JW. Stress: a possible link between genetics, epigenetics, and childhood asthma. Am J Respir Crit Care Med. 2013;187(6):563–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Suter M, Abramovici A, Showalter L, Hu M, Shope CD, Varner M, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metab Clin Exp. 2010;59(10):1481–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Dominguez-Salas P, Cox SE, Prentice AM, Hennig BJ, Moore SE. Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc. 2012;71(1):154–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Martinussen MP, Risnes KR, Jacobsen GW, Bracken MB. Folic acid supplementation in early pregnancy and asthma in children aged 6 years. Am J Obstet Gynecol. 2012;206(1):72. e1-7.

    PubMed Central  PubMed  Google Scholar 

  89. Barua S, Kuizon S, Junaid MA. Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci. 2014;21:77.

    PubMed Central  PubMed  Google Scholar 

  90. McGarel C, Pentieva K, Strain JJ, McNulty H. Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc. 2015;74(1):46–55.

    CAS  PubMed  Google Scholar 

  91. Yang L, Jiang L, Bi M, Jia X, Wang Y, He C, et al. High dose of maternal folic acid supplementation is associated to infant asthma. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2015;75:88–93.

    CAS  Google Scholar 

  92. Zetstra-van der Woude PA, De Walle HE, Hoek A, Bos HJ, Boezen HM, Koppelman GH, et al. Maternal high-dose folic acid during pregnancy and asthma medication in the offspring. Pharmacoepidemiol Drug Saf. 2014;23(10):1059–65.

    CAS  PubMed  Google Scholar 

  93. Bekkers MB, Elstgeest LE, Scholtens S, Haveman-Nies A, de Jongste JC, Kerkhof M, et al. Maternal use of folic acid supplements during pregnancy, and childhood respiratory health and atopy. Eur Respir J. 2012;39(6):1468–74.

    CAS  PubMed  Google Scholar 

  94. Yamaguchi Y, Takamura H, Tada Y, Akagi T, Oyama K, Miyashita T, et al. Nanog positively regulates Zfp57 expression in mouse embryonic stem cells. Biochem Biophys Res Commun. 2014;453(4):817–20.

    CAS  PubMed  Google Scholar 

  95. Amarasekera M, Martino D, Ashley S, Harb H, Kesper D, Strickland D et al. Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J Off Publ Fed Am Soc Exp Biol. 2014.

  96. Kremmyda LS, Vlachava M, Noakes PS, Diaper ND, Miles EA, Calder PC. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol. 2011;41(1):36–66.

    CAS  PubMed  Google Scholar 

  97. Netting MJ, Middleton PF, Makrides M. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. Nutrition (Burbank, Los Angeles County, Calif). 2014;30(11–12):1225–41.

    CAS  Google Scholar 

  98. Miles EA, Calder PC. Omega-6 and omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood. Curr Pharm Des. 2014;20(6):946–53.

    CAS  PubMed  Google Scholar 

  99. Palmer DJ, Sullivan T, Gold MS, Prescott SL, Heddle R, Gibson RA, et al. Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial. BMJ (Clin Res Ed). 2012;344:e184.

    CAS  Google Scholar 

  100. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21(9):781–92.

    CAS  PubMed  Google Scholar 

  101. Xue B, Yang Z, Wang X, Shi H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PLoS One. 2012;7(10), e45990.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Yang Z, Kahn BB, Shi H, Xue BZ. Macrophage alpha1 AMP-activated protein kinase (alpha1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 2010;285(25):19051–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Shek LP, Chong MF, Lim JY, Soh SE, Chong YS. Role of dietary long-chain polyunsaturated fatty acids in infant allergies and respiratory diseases. Clin Dev Immunol. 2012;2012:730568.

    PubMed Central  PubMed  Google Scholar 

  104. Bildstrup L, Backer V, Thomsen SF. Increased body mass index predicts severity of asthma symptoms but not objective asthma traits in a large sample of asthmatics. J Asthma Off J Assoc Care Asthma. 2015:1–22.

  105. Silveira DH, Zhang L, Prietsch SO, Vecchi AA, Susin LR. Association between dietary habits and asthma severity in children. Indian Pediatr. 2015;52(1):25–30.

    PubMed  Google Scholar 

  106. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151(10):4756–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Rastogi D, Suzuki M, Greally JM. Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci Rep. 2013;3:2164.

    PubMed Central  PubMed  Google Scholar 

  108. Williams DR, Sternthal M, Wright RJ. Social determinants: taking the social context of asthma seriously. Pediatrics. 2009;123 Suppl 3:S174–84.

    PubMed Central  PubMed  Google Scholar 

  109. Cohen RT, Canino GJ, Bird HR, Celedon JC. Violence, abuse, and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2008;178(5):453–9.

    PubMed Central  PubMed  Google Scholar 

  110. Chen W, Boutaoui N, Brehm JM, Han YY, Schmitz C, Cressley A, et al. ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med. 2013;187(6):584–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Lange NE, Bunyavanich S, Silberg JL, Canino G, Rosner BA, Celedon JC. Parental psychosocial stress and asthma morbidity in Puerto Rican twins. J Allergy Clin Immunol. 2011;127(3):734–40. e1-7.

    PubMed Central  PubMed  Google Scholar 

  112. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Saman Sabounchi, Jenna Bollyky, and Kari Nadeau declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Nadeau.

Additional information

This article is part of the Topical Collection on Food Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabounchi, S., Bollyky, J. & Nadeau, K. Review of Environmental Impact on the Epigenetic Regulation of Atopic Diseases. Curr Allergy Asthma Rep 15, 33 (2015). https://doi.org/10.1007/s11882-015-0533-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0533-1

Keywords

Navigation