Skip to main content

Advertisement

Log in

MicroRNA in Chronic Rhinosinusitis and Allergic Rhinitis

  • RHINOSINUSITIS (J MULLOL, SECTION EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Inflammatory upper airway diseases, particularly chronic rhinosinusitis (CRS) and allergic rhinitis (AR), have a high worldwide prevalence. CRS and AR involve sustained and exaggerated inflammation that is associated with marked changes in gene and protein expression under tight regulation. A novel group of gene expression regulators is a class of short single-stranded RNA molecules termed microRNAs (miRNAs). miRNAs can cause gene silencing through degradation of target mRNAs or inhibition of translation. Dysregulated expression of miRNAs has been shown in various human diseases, such as cancer, inflammatory skin and bowel diseases, rheumatoid arthritis, and asthma. Although studies of miRNAs in inflammatory upper airway diseases are relatively new and few, emerging evidence implicates an involvement of miRNAs in shaping the inflammation pattern in upper airways. The purpose of this review is to provide an overview on our current understanding of miRNA expression and function in CRS and AR, and to underscore the potential for clinical usage of miRNAs in CRS and AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  CAS  PubMed  Google Scholar 

  2. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–60.

    Article  PubMed  Google Scholar 

  3. Ambros V. The functions of animal microRNAs. Nature. 2007;431:350–5.

    Article  Google Scholar 

  4. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH H, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Makeyev EV, Maniatis T. Multilevel regulation of gene expression by micro-RNAs. Science. 2008;319:1789–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol. 2013;132:3–13.

    Article  CAS  PubMed  Google Scholar 

  8. Kawaji H, Hayashizaki Y. Exploration of small RNAs. PLoS Genet. 2008;4:e22.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  10. Coskun M, Bjerrum JT, Seidelin JB, Nielsen OH. MicroRNAs in inflammatory bowel disease–pathogenesis, diagnostics and therapeutics. World J Gastroenterol. 2012;18:4629–34.

    Article  CAS  PubMed  Google Scholar 

  11. Long XB, Sun GB, Hu S, Liang GT, et al. Let-7a microRNA functions as a potential tumor suppressor in human laryngeal cancer. Oncol Rep. 2009;22:1189–95.

    CAS  PubMed  Google Scholar 

  12. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122:6–7.

    Article  CAS  PubMed  Google Scholar 

  13. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106:18704–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182:220–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sonkoly E, Janson P, Majuri ML, et al. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol. 2010;126:581–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2:e610.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang H, Liu Y, Liu Z. Clara cell 10-kD protein in inflammatory upper airway diseases. Curr Opin Allergy Clin Immunol. 2013;13:25–30.

    Article  CAS  PubMed  Google Scholar 

  18. Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63 Suppl 86:8–160.

    Article  PubMed  Google Scholar 

  19. Liu Z, Kim J, Sypek JP, et al. Gene expression profiles in human nasal polyp tissues studied by means of DNA microarray. J Allergy Clin Immunol. 2004;114:783–90.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao CY, Wang X, Liu M, Jin DJ. Microarray gene analysis of Toll-like receptor signaling elements in chronic rhinosinusitis with nasal polyps. Int Arch Allergy Immunol. 2011;156:297–304.

    Article  CAS  PubMed  Google Scholar 

  21. Tewfik MA, Bossé Y, Al-Shemari H, Desrosiers MJ. Genetics of chronic rhinosinusitis: a primer. Otolaryngol Head Neck Surg. 2010;39:62–8.

    Google Scholar 

  22. Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW, et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res. 2007;67:2345–50.

    Article  CAS  PubMed  Google Scholar 

  23. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–5.

    Article  CAS  PubMed  Google Scholar 

  24. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  25. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kok KH, Ng MH, Ching YP, Jin DY. Human TRBP and PACT directly interact with each other and associate with Dicer to facilitate the production of small interfering RNA. J Biol Chem. 2007;282:17649–57.

    Article  CAS  PubMed  Google Scholar 

  27. Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Haase AD, Jaskiewicz L, Zhang H, et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 2005;6:961–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhang YN, Cao PP, Zhang XH, Lu X, Liu Z. Expression of microRNA machinery proteins in different types of chronic rhinosinusitis. Laryngoscope. 2012;122:2621–7. This study reports the expression of miRNA machinery proteins in sinonasal mucosa and increased PACT expression in plasma cells in eosinophilic CRSwNP.

    Article  CAS  PubMed  Google Scholar 

  30. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J. 2006;25:522–32.

    Article  CAS  PubMed  Google Scholar 

  31. Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 2002;16:2491–6.

    Article  CAS  PubMed  Google Scholar 

  32. Filková M, Jüngel A, Gay RE, Gay S. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. BioDrugs. 2012;26:131–41.

    Article  PubMed  Google Scholar 

  33. Bandiera S, Cartault F, Jannot AS, et al. Genetic variations creating microRNA target sites in the FXN 3'-UTR affect frataxin expression in Friedreich ataxia. PLoS One. 2013;8:e54791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ye Q, Zhao X, Xu K, et al. Polymorphisms in lipid metabolism related miRNA binding sites and risk of metabolic syndrome. Gene. 2013;528:132–8.

    Article  CAS  PubMed  Google Scholar 

  35. Fokkens WJ, Lund VJ, Mullol J, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl. 2012;23:1–298.

    Google Scholar 

  36. Meltzer EO, Hamilos DL, Hadley JA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol. 2004;114:S155–212.

    Article  Google Scholar 

  37. Cao PP, Li HB, Wang BF, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009;124:478–84.

    Article  CAS  PubMed  Google Scholar 

  38. Van Bruaene N, Pérez-Novo CA, Basinski TM, et al. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 2008;121:1435–41.

    Article  PubMed  Google Scholar 

  39. Van Zele T, Claeys S, Gevaert P, et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006;61:1280–9.

    Article  PubMed  Google Scholar 

  40. Shi LL, Xiong P, Zhang L, et al. Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns. Allergy. 2013;68:101–9.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2012;185:140–51. This study demonstrates miR-125b can promote type I INF expression through suppressing the protein expression of 4E-BP1, thus contributing to eosinophilic inflammation.

    Article  CAS  PubMed  Google Scholar 

  42. Colina R, Costa-Mattioli M, Dowling RJ, et al. Translational control of the innate immune response through IRF-7. Nature. 2008;452:323–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kato A, Truong-Tran AQ, Scott AL, et al. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-beta-dependent mechanism. J Immunol. 2006;177:7164–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kato A, Peters A, Suh L, Carter R, et al. Evidence of a role for B cell activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2008;121:1385–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Liao B, Hu CY, Liu T, Liu Z. Respiratory viral infection in the chronic persistent phase of chronic rhinosinusitis. Laryngoscope. 2013. doi:10.1002/lary.24348.

    Google Scholar 

  46. Chiosea S, Jelezcova E, Chandran U, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006;169:1812–20.

    Article  CAS  PubMed  Google Scholar 

  47. Chong MM, Rasmussen JP, Rudensky AY, Littman DR. The RNaseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med. 2008;205:2005–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Liston A, Lu LF, O’Carroll D, Tarakhovsky A, Rudensky AY. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med. 2008;205:1993–2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847–59.

    Article  CAS  PubMed  Google Scholar 

  50. Shaoqing Y, Ruxin Z, Guojun L, et al. Microarray analysis of differentially expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy. 2011;25:e242–6. This study compares the difference in miRNA expression profiles between AR patients and nonallergic controls.

    Article  PubMed  Google Scholar 

  51. Suojalehto H, Toskala E, Kilpeläinen M, et al. MicroRNA profiles in nasal mucosa of patients with allergic and nonallergic rhinitis and asthma. Int Forum Allergy Rhinol. 2013;3:612–20.

    Article  PubMed  Google Scholar 

  52. Chen RF, Huang HC, Ou CY, et al. MicroRNA-21 expression in neonatal blood associated with antenatal immunoglobulin E production and development of allergic rhinitis. Clin Exp Allergy. 2010;40:1482–90. This study indicates that the regulatory association between miR-21 and TGFBR2 in AR and miR-21 could potentially be an early predictor of AR.

    Article  CAS  PubMed  Google Scholar 

  53. Salib RJ, Kumar S, Wilson SJ, Howarth PH. Nasal mucosal immunoexpression of the mast cell chemoattractants TGF-beta, eotaxin, and stem cell factor and their receptors in allergic rhinitis. J Allergy Clin Immunol. 2004;114:799–806.

    Article  CAS  PubMed  Google Scholar 

  54. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182:4994–5002.

    Article  CAS  PubMed  Google Scholar 

  55. Li T, Leong MH, Harms B, Kennedy G, Chen L. MicroRNA-21 as a potential colon and rectal cancer biomarker. World J Gastroenterol. 2013;19:5615–21.

    PubMed  Google Scholar 

  56. Fendler A, Jung K. MicroRNAs as new diagnostic and prognostic biomarkers in urological tumors. Crit Rev Oncog. 2013;18:289–302.

    Article  PubMed  Google Scholar 

  57. Baxter D, McInnes IB, Kurowska-Stolarska M. Novel regulatory mechanisms in inflammatory arthritis: a role for microRNA. Immunol Cell Biol. 2012;90:288–92.

    Article  CAS  PubMed  Google Scholar 

  58. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327:198–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128:160–7.

    Article  CAS  PubMed  Google Scholar 

  60. Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol (1985). 2012;113:459–64.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

This study was supported by National Natural Science Foundation of China (NSFC) grant 81325006 and 81020108018 to Z.L., and a grant from Ministry of Health of China (201202005).

Xin-Hao Zhang, Ya-Na Zhang, and Zheng Liu declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Additional information

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XH., Zhang, YN. & Liu, Z. MicroRNA in Chronic Rhinosinusitis and Allergic Rhinitis. Curr Allergy Asthma Rep 14, 415 (2014). https://doi.org/10.1007/s11882-013-0415-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-013-0415-3

Keywords

Navigation