Emission inventory for harbour-related activities: comparison of two distinct bottom-up methodologies

Abstract

Emission inventories are an essential tool for harbour authorities to assess the impacts of harbour-related activities and to assess the effectiveness of mitigation measures. In this paper, two bottom-up methodologies (EMEP/EEA and US/SCG) are applied to the Port of Leixões, Portugal, to develop an emission inventory for harbour-related activities, accounting for both the emissions from shipping and the cargo handling equipment. Emission estimates obtained from the two methodologies are compared and discussed. Regarding shipping emissions, the main disparities between the two methodologies arise from the differences in emission factors and application (or not) of fuel correction factors. Among the considered pollutants, EMEP/EEA methodology estimates higher total emissions (for all types of ship combined) of SOX, NOX, VOC, PM2.5, PM10, CH4, HC, CO and CO2 (up to 46%), and lower emission of only N2O (up to 7%), comparing to US/SCG. Regarding CHE emissions, only EMEP/EEA methodology considers the deterioration factors adjustment, while the fuel correction factor is only considered for US/SCG methodology. Different emission factors also contribute to the observed differences in CHE emissions estimates, leading to higher total emissions (for all CHE combined) of NOX, CO, N2O, PM2.5, PM10, SOX and CO2 (up to 85%), and lower emission of only CH4 (264%), comparing to US/SCG. This paper provides a highly relevant approach to estimate CHE-related emissions in European ports and highlights the importance for a standardized methodology to estimate emissions from harbour activities, contributing not only to improve the scientific knowledge but also to provide support to harbour authorities, regarding the quantification of harbour’s environmental performance and the definition of mitigation measures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aksoyoglu S, Baltensperger U, Prévôt ASH (2016) Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmos Chem Phys 16:1895–1906. https://doi.org/10.5194/acp-16-1895-2016

    CAS  Article  Google Scholar 

  2. Alver F, Saraç BA, Alver Şahin Ü (2018) Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmos Pollut Res 9:822–828. https://doi.org/10.1016/j.apr.2018.02.003

    CAS  Article  Google Scholar 

  3. Aulinger A, Matthias V, Zeretzke M, Bieser J, Quante M, Backes A (2016) The impact of shipping emissions on air pollution in the greater North Sea region-part 1: current emissions and concentrations. Atmos Chem Phys 16:739–758. https://doi.org/10.5194/acp-16-739-2016

    CAS  Article  Google Scholar 

  4. Broome RA, Cope ME, Goldsworthy B, Goldsworthy L, Emmerson K, Jegasothy E, Morgan GG (2016) The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environ Int 87:85–93. https://doi.org/10.1016/j.envint.2015.11.012

    CAS  Article  Google Scholar 

  5. CARB, 2007. A critical review of ocean-going vessel particulate matter emission factor (2007). www.arb.ca.gov/msei/offroad/pubs/ocean_going_vessles_pm_emfac.pdf

  6. Cesari D, Genga A, Ielpo P, Siciliano M, Mascolo G, Grasso FM, Contini D (2014) Source apportionment of PM2.5in the harbour-industrial area of Brindisi (Italy): identification and estimation of the contribution of in-port ship emissions. Sci Total Environ 497–498:392–400. https://doi.org/10.1016/j.scitotenv.2014.08.007

    CAS  Article  Google Scholar 

  7. Chen D, Zhao N, Lang J, Zhou Y, Wang X, Li Y, Zhao Y, Guo X (2018) Contribution of ship emissions to the concentration of PM2.5: a comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China. Sci Total Environ 610–611:1476–1486. https://doi.org/10.1016/j.scitotenv.2017.07.255

    CAS  Article  Google Scholar 

  8. Crilley LR, Lucarelli F, Bloss WJ, Harrison RM, Beddows DC, Calzolai G, Nava S, Valli G, Bernardoni V, Vecchi R (2017) Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ Pollut 220:766–778. https://doi.org/10.1016/j.envpol.2016.06.002

    CAS  Article  Google Scholar 

  9. Deniz C, Kilic A (2010) Estimation and assessment of shipping emissions in the region of Ambarli Port, Turkey. Environ Prog Sustain Energy 29:676–680. https://doi.org/10.1002/ep.10373

  10. EEA (2019a) European Environment Agency. Non road mobile source and machinery - 2019

  11. EEA (2019b) European Environment Agency. International maritime navigation, international inland navigation, national navigation (shipping), national fishing, military (shipping), and recreational boats. https://doi.org/10.1017/CBO9781107415324.004

  12. ENTEC (2002) Entec UC Limited. Ship Emissions Final Report - Quantification of Ship Emissions

  13. ENTEC (2010) Entec UC Limited. UK Ship Emissions Inventory

  14. EPA (2009) U.S. Environmental Protection Agency. Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories

  15. Ferreira J, Guevara M, Baldasano JM, Tchepel O, Schaap M, Miranda AI, Borrego C (2013) A comparative analysis of two highly spatially resolved European atmospheric emission inventories. Atmos Environ 75:43–57. https://doi.org/10.1016/j.atmosenv.2013.03.052

    CAS  Article  Google Scholar 

  16. Fu M, Liu H, Jin X, He K (2017) National- to port-level inventories of shipping emissions in China. Environ Res Lett 12. https://doi.org/10.1088/1748-9326/aa897a

  17. Georgatzi VV, Stamboulis Y, Vetsikas A (2020) Examining the determinants of CO2 emissions caused by the transport sector: empirical evidence from 12 European countries. Econ Anal Policy 65:11–20. https://doi.org/10.1016/j.eap.2019.11.003

    Article  Google Scholar 

  18. Gobbi GP, Di Liberto L, Barnaba F (2020) Impact of port emissions on EU-regulated and non-regulated air quality indicators: the case of Civitavecchia (Italy). Sci Total Environ 719:134984. https://doi.org/10.1016/j.scitotenv.2019.134984

    CAS  Article  Google Scholar 

  19. Goldsworthy B, Enshaei H, Jayasinghe S (2019) Comparison of large-scale ship exhaust emissions across multiple resolutions: from annual to hourly data. Atmos Environ 214:116829. https://doi.org/10.1016/j.atmosenv.2019.116829

    CAS  Article  Google Scholar 

  20. Graber M, Mohr S, Baptiste L, Duloquin G, Blanc-Labarre C, Mariet AS, Giroud M, Béjot Y (2019) Air pollution and stroke. A new modifiable risk factor is in the air. Rev Neurol (Paris) 175:619–624. https://doi.org/10.1016/j.neurol.2019.03.003

  21. ICF International, 2009. ICF International Current Methodologies in Preparing Mobile Source Port-related Emission Inventories (2009)

  22. ICS (2014) Shipping, World Trade and the Reduction of CO2 Emissions. United Nations Framew Conv Clim Chang

  23. IMO (2010) Prevention of Air Pollution from ships. https://doi.org/10.1017/CBO9781107415324.004

  24. IMO (2016) Prevention of air pollution from ships. International Maritime Organization (2016) Available from: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Air-Pollution.aspx

  25. IVL, 2004. IVL Methodology for Calculating Emissions from Ships (2004) Prepared by IVL Swedish Environmental Research Institute for the Swedish Environmental Protection Agency. Sweden

  26. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051

    CAS  Article  Google Scholar 

  27. Jalkanen J-P, Brink A, Kalli J, Pettersson H, Kukkonen J, Stipa T (2009) A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos Chem Phys 9:9209–9223. https://doi.org/10.5194/acp-9-9209-2009

    CAS  Article  Google Scholar 

  28. Jonson JE, Jalkanen JP, Johansson L, Gauss M, Denier van der Gon HAC (2015) Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea. Atmos Chem Phys 15:783–798. https://doi.org/10.5194/acp-15-783-2015

    CAS  Article  Google Scholar 

  29. Karagulian F, Belis CA, Dora CFC, Prüss-Ustün AM, Bonjour S, Adair-Rohani H, Amann M (2015) Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087

    CAS  Article  Google Scholar 

  30. Lindstad H, Eskeland GS (2015) Low carbon maritime transport: how speed, size and slenderness amounts to substantial capital energy substitution. Transp Res Part D Transp Environ 41:244–256. https://doi.org/10.1016/j.trd.2015.10.006

    Article  Google Scholar 

  31. López-Aparicio S, Tønnesen D, Thanh TN, Neilson H (2017) Shipping emissions in a Nordic port: assessment of mitigation strategies. Transp Res Part D Transp Environ 53:205–216. https://doi.org/10.1016/j.trd.2017.04.021

    Article  Google Scholar 

  32. Martínez-Moya J, Vazquez-Paja B, Gimenez Maldonado JA (2019) Energy efficiency and CO2 emissions of port container terminal equipment: evidence from the Port of Valencia. Energy Policy 131:312–319. https://doi.org/10.1016/j.enpol.2019.04.044

    Article  Google Scholar 

  33. Merico E, Donateo A, Gambaro A, Cesari D, Gregoris E, Barbaro E, Dinoi A, Giovanelli G, Masieri S, Contini D (2016) Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmos Environ 139:1–10. https://doi.org/10.1016/j.atmosenv.2016.05.024

    CAS  Article  Google Scholar 

  34. Monteiro A, Russo M, Gama C, Borrego C (2018) How important are maritime emissions for the air quality: at European and national scale. Environ Pollut 242:565–575. https://doi.org/10.1016/j.envpol.2018.07.011

    CAS  Article  Google Scholar 

  35. Monteiro A, Sá E, Fernandes A, Gama C, Sorte S, Borrego C, Lopes M, Russo MA (2018) How healthy will be the air quality in 2050? Air Qual Atmos Heal 11:353–362. https://doi.org/10.1007/s11869-017-0466-z

    CAS  Article  Google Scholar 

  36. Murena F, Mocerino L, Quaranta F, Toscano D (2018) Impact on air quality of cruise ship emissions in Naples, Italy. Atmos Environ 187:70–83. https://doi.org/10.1016/j.atmosenv.2018.05.056

    CAS  Article  Google Scholar 

  37. Nunes RAO, Alvim-Ferraz MCM, Martins FG, Sousa SIV (2017) Assessment of shipping emissions on four ports of Portugal. Environ Pollut 231:1370–1379. https://doi.org/10.1016/j.envpol.2017.08.112

    CAS  Article  Google Scholar 

  38. Ortega Piris A, Díaz-Ruiz-Navamuel E, Pérez-Labajos CA, Oria Chaveli J (2018) Reduction of CO2 emissions with automatic mooring systems. The case of the port of Santander. Atmos Pollut Res 9:76–83. https://doi.org/10.1016/j.apr.2017.07.002

    Article  Google Scholar 

  39. Park S, Allen RJ, Lim CH (2020) A likely increase in fine particulate matter and premature mortality under future climate change. Air Qual Atmos Heal 13:143–151. https://doi.org/10.1007/s11869-019-00785-7

    CAS  Article  Google Scholar 

  40. Puig M, Darbra RM (2019) Chapter 31-the role of ports in a global economy, issues of relevance and environmental initiatives. In: Sheppard CBT-WS an EE (Second E (ed). Academic Press, pp 593–611

  41. Rajagopalan S, Al-Kindi SG, Brook RD (2018) Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 72:2054–2070. https://doi.org/10.1016/j.jacc.2018.07.099

    CAS  Article  Google Scholar 

  42. Ravindra K, Rattan P, Mor S, Aggarwal AN (2019) Generalized additive models: building evidence of air pollution, climate change and human health. Environ Int 132:104987. https://doi.org/10.1016/j.envint.2019.104987

    CAS  Article  Google Scholar 

  43. Rodrigues V, Russo M, Sorte S, Reis J, Oliveira K, Dionísio AL, Monteiro A, Lopes M (2021) Harmonizing sustainability assessment in seaports: a common framework for reporting environmental performance indicators. Ocean Coast Manag 202:105514. https://doi.org/10.1016/j.ocecoaman.2020.105514

    Article  Google Scholar 

  44. Russo MA, Gama C, Monteiro A (2019) How does upgrading an emissions inventory affect air quality simulations? Air Qual Atmos Heal 12:731–741. https://doi.org/10.1007/s11869-019-00692-x

    CAS  Article  Google Scholar 

  45. Russo MA, Leitão J, Gama C, Ferreira J, Monteiro A (2018) Shipping emissions over Europe: a state-of-the-art and comparative analysis. Atmos Environ 177:187–194. https://doi.org/10.1016/j.atmosenv.2018.01.025

    CAS  Article  Google Scholar 

  46. Saraçoǧlu H, Deniz C, Kiliç A (2013) An investigation on the effects of ship sourced emissions in Izmir port, Turkey Sci World J 2013:. https://doi.org/10.1155/2013/218324, 2013, 1, 8

  47. SCG (2011) Port of Los Angeles, and Starcrest Consulting Group, LLC. Port of Los Angeles inventory of Air Emissions - 2010

  48. SCG (2014) Port of Long Beach, and Starcrest Consulting Group, LLC. Port of Long Beach Emissions Inventory - 2013

  49. SCG (2015) Port of Long Beach, and Starcrest Consulting Group, LLC. Air Emissions Inventory - 2014. https://doi.org/10.1017/CBO9781107415324.004

  50. SCG (2019a) Port of Long Beach, and Starcrest Consulting Group, LLC. San Pedro Bay Ports emissions inventory methodology report 2019

  51. SCG (2019b) Port of Long Beach, and Starcrest Consulting Group, LLC. Air Emissions Inventory - 2018

  52. SeaWeb (2018), Sea-web™: the ultimate marine online database. https://ihsmarkit.com/products/sea-web-maritime-reference.html.

  53. Song S (2014) Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port. Atmos Environ 82:288–297. https://doi.org/10.1016/j.atmosenv.2013.10.006

    CAS  Article  Google Scholar 

  54. Song SK, Shon ZH (2014) Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea. Environ Sci Pollut Res 21:6612–6622. https://doi.org/10.1007/s11356-014-2569-5

    CAS  Article  Google Scholar 

  55. Sorte S, Arunachalam S, Naess B, Seppanen C, Rodrigues V, Valencia A, Borrego C, Monteiro A (2019) Assessment of source contribution to air quality in an urban area close to a harbor: case-study in Porto, Portugal. Sci Total Environ 662:347–360. https://doi.org/10.1016/j.scitotenv.2019.01.185

    CAS  Article  Google Scholar 

  56. Sorte S, Rodrigues V, Ascenso A, Freitas S, Valente J, Monteiro A, Borrego C (2018) Numerical and physical assessment of control measures to mitigate fugitive dust emissions from harbor activities. Air Qual Atmos Heal 11:493–504. https://doi.org/10.1007/s11869-018-0563-7

    CAS  Article  Google Scholar 

  57. Sorte S, Rodrigues V, Borrego C, Monteiro A (2020) Impact of harbour activities on local air quality: a review. Environ Pollut 257:113542. https://doi.org/10.1016/j.envpol.2019.113542

    CAS  Article  Google Scholar 

  58. Tsai Y-T, Liang C-J, Huang K-H, Hung KH, Jheng CW, Liang JJ (2018) Self-management of greenhouse gas and air pollutant emissions in Taichung Port, Taiwan. Transp Res Part D Transp Environ 63:576–587. https://doi.org/10.1016/j.trd.2018.07.001

    Article  Google Scholar 

  59. Tzannatos E (2010) ShiP emissions and their externalities for the port of Piraeus-Greece. Atmos Environ 44:400–407. https://doi.org/10.1016/j.atmosenv.2009.10.024

    CAS  Article  Google Scholar 

  60. UNCTAD (2019) Review of maritime transport 2019. United Nations, Geneva

  61. Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, Vlieger I, van Aardenne J (2014) Impact of maritime transport emissions on coastal air quality in Europe. Atmos Environ 90:96–105. https://doi.org/10.1016/j.atmosenv.2014.03.046

    CAS  Article  Google Scholar 

  62. Zhang Y, Yang X, Brown R, Yang L, Morawska L, Ristovski Z, Fu Q, Huang C (2017) Shipping emissions and their impacts on air quality in China. Sci Total Environ 581–582:186–198. https://doi.org/10.1016/j.scitotenv.2016.12.098

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Port of Leixões Administration, and Eng. Graça Oliveira, for sharing all the needed data for this work. For the same reason, the authors also acknowledge the concessionaires of the different harbour terminals, such as Terminal de Carga Geral e Granéis de Leixões, S.A. (TCGL), Terminal de Contentores de Leixões, S.A. (TCL) and Silos de Leixões (SdL). Thanks are due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020+UIDB/50017/2020), through national funds. Sandra Sorte acknowledges FCT—Fundação para a Ciência e a Tecnologia I.P.—for her PhD Grant (SFRH/ BD/117164/2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Sorte.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 140 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sorte, S., Rodrigues, V., Lourenço, R. et al. Emission inventory for harbour-related activities: comparison of two distinct bottom-up methodologies. Air Qual Atmos Health (2021). https://doi.org/10.1007/s11869-021-00982-3

Download citation

Keywords

  • Atmospheric pollutants
  • Emissions’ estimation
  • Harbours
  • Ship
  • Cargo handling equipment