Review of land use specific source contributions in PM2.5 concentration in urban areas in India

Abstract

Source apportionment studies are expected to provide relative contribution of different sources responsible for deteriorated air quality in an urban area, so that the agency responsible for urban air quality management can adopt prioritized source-specific control measures. Robust assessment of source contributions in a typical urban land-use pattern is the prime step for development of effective emission control strategies. This necessitates a critical review of the PM2.5 source apportionment studies conducted in different urban land uses and delineation of the dominant sources along with its contribution to reveal the diversifications among the peculiar land use classifications even within the same city. The present study reviewed the source apportionment studies carried out at 37 locations from seven Indian cities and categorized the sources contribution on seasonal (winters and summers) average basis for residential, commercial, industrial, kerbside, and mixed locations. The findings of the review studies inferred considerable variations in the source’s contribution to air pollution with land use change. For example, during winter, domestic/biomass emission was reported as a significant source in residential (34%), commercial (26%), mixed (46%), industrial (31%), and road side (27%) locations in Delhi city in North India. However, vehicle (57%) was found to be the dominant source in residential area whose contribution increased up to 76% at road side location in Bangalore City in South India. It is also observed that source contributions vary in different seasons depending upon the activity levels. More or less similar observation was found in other cities selected for this study. The variations in source apportionment findings for a particular city might be attributed to heterogeneity of sources/major activity areas, nonuniform adoption of methodology. The study emphasizes on the need for the development of urban air quality management plan based on the land use specific source apportionment studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AMS:

Accelerator mass spectrometry

ASS:

Atomic absorption spectroscopy

BAM:

Beta attenuation monitor

IC:

Ion chromatography

CMB:

Chemical mass balance

COPREM:

Constrained physical receptor model

DRI:

Desert Research Institute

ED-XRF:

Energy dispersive X-ray fluorescence

FDMS:

Filter dynamics measurement system

GC-MS:

Gas chromatograph-mass spectrometry

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

ICP-MS:

Inductively coupled plasma-mass spectrometry

ICP-OES:

Inductively coupled plasma-optical emission spectroscopy

LC-MS:

Liquid chromatography-mass spectrometry

MLR:

Multi linear regression

PCA:

Principal component analysis

PIXE:

Proton induced X-ray emission

PMF:

Positive matrix factorization

TEOM:

Tapered element oscillating microbalance

VAPS:

Versatile air pollutant sampler

XRF:

X-Ray Fluorescence

References

  1. Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2005) Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmos Environ 39(17):3127–3138

    CAS  Article  Google Scholar 

  2. Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2006) Approaching PM2. 5 and PM2. 5− 10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Sci Total Environ 368(2-3):663-674, Approaching PM2.5 and PM2.5−10 source apportionment by mass balance analysis, principal component analysis and particle size distribution.

  3. Automotive Research Association of India (ARAI), The Energy Resources Institute (TERI) (2018) Source apportionment of PM2.5 and PM10 of Delhi NCR for identification of major sources. 560 Pages. Available on https://www.teriin.org/sites/default/files/2018-08/Report_SA_AQM-Delhi-NCR_0.pdf.

  4. Balachandran S, Meena BR, Khillare PS (2000) Particle size distribution and its elemental composition in the ambient air of Delhi. Environ Int 26(1-2):49–54

    CAS  Article  Google Scholar 

  5. Banerjee T, Christian RA (2018) A review on nanoparticle dispersion from vehicular exhaust: Assessment of Indian urban environment. Atmos Pollut Res 9(2):342–357

    CAS  Article  Google Scholar 

  6. Banerjee T, Murari V, Kumar M, Raju MP (2015) Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos Res 164:167–187

    Article  CAS  Google Scholar 

  7. Behera SN, Sharma M, Mishra PK, Nayak P, Damez-Fontaine B, Tahon R (2015) Passive measurement of NO2 and application of GIS to generate spatially-distributed air monitoring network in urban environment. Urban Clim 14:396–413

    Article  Google Scholar 

  8. Bhowmik HS, Naresh S, Bhattu D, Rastogi N, Prévôt AS, Tripathi SN (2020) Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2. 5 aerosol over five sites of Indo-Gangetic plain. Atmos Pollut Res.

  9. Cesari D, Amato F, Pandolfi M, Alastuey A, Querol X, Contini D (2016) An inter-comparison of PM 10 source apportionment using PCA and PMF receptor models in three European sites. Environ Sci Pollut Res 23(15):15133–15148

    CAS  Article  Google Scholar 

  10. Chelani AB, Gajghate DG, Devotta S (2008) Source apportionment of PM10 in Mumbai, India using CMB model. Bull Environ Contam Toxicol 81(2):190–195

    CAS  Article  Google Scholar 

  11. Chowdhury Z, Zheng M, Schauer JJ, Sheesley RJ, Salmon LG, Cass GR, Russell AG (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2. 5 in Indian cities. J Geophys Res Atmos 112(D15)

  12. Central Pollution Control Board (CPCB) (2010) Air quality monitoring, emission inventory and source apportionment study for Indian cities. National Summary Report. 290 Pages.

  13. Central Pollution Control Board (CPCB) (2017) Odour Monitoring & Management in Urban MSW Landfill Sites. 263 Pages. Available on http://164.100.107.13/upload/NewItems/NewItem_230_ Odour_report_September_2017.pdf.

  14. Gadi R, Sharma SK, Mandal TK, Kumar R, Mona S, Kumar S, Kumar S (2018) Levels and sources of organic compounds in fine ambient aerosols over National Capital Region of India. Environ Sci Pollut Res 25(31):31071–31090

    Article  CAS  Google Scholar 

  15. Gadi R, Sharma SK, Mandal TK (2019) Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2. 5): A complete year study over National Capital Region of India. Chemosphere 221:583–596

    CAS  Article  Google Scholar 

  16. Garaga R, Gokhale S, Kota SH (2020) Source apportionment of size-segregated atmospheric particles and the influence of particles deposition in the human respiratory tract in rural and urban locations of north-east India. Chemosphere 126980.

  17. Gokhale S, Khare M (2007) Statistical behavior of carbon monoxide from vehicular exhausts in urban environments. Environ Modell Softw 22(4):526–535

    Article  Google Scholar 

  18. Goyal P, Gulia S, Goyal SK, Kumar R (2019) Assessment of the effectiveness of policy interventions for Air Quality Control Regions in Delhi city. Environ Sci Pollut Res 26(30):30967–30979

    CAS  Article  Google Scholar 

  19. Grover D, Chaudhry S (2019) Ambient air quality changes after stubble burning in rice–wheat system in an agricultural state of India. Environ Sci Pollut Res 26(20):20550–20559

    CAS  Article  Google Scholar 

  20. Gulia S, Nagendra SMS, Khare M, Khanna I (2015) Urban air quality management-A review. Atmos Pollut Res 6(2):286–304

    Article  Google Scholar 

  21. Gulia S, Nagendra SMS, Khare M (2016) Extreme events of reactive ambient air pollutants and their distribution pattern at urban hotspots. Aerosol Air Qual Res 17(2):394–405

    Article  CAS  Google Scholar 

  22. Gulia S, Goyal P, Goyal SK, Kumar R (2018) Re-suspension of road dust: contribution, assessment and control through dust suppressants—a review. Int J Environ Sci Technol 16(3):1717–1728

    Article  Google Scholar 

  23. Gummeneni S, Yusup YB, Chavali M, Samadi SZ (2011) Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmos Res 101(3):752–764

    CAS  Article  Google Scholar 

  24. Guo H, Kota SH, Chen K, Sahu SK, Hu J, Ying Q, Wang Y, Zhang H (2018) Source contributions and potential reductions to health effects of particulate matter in India. Atmos Chem Phys 18:15219–15229

    CAS  Article  Google Scholar 

  25. Guo H, Kota SH, Sahu SK, Zhang H (2019) Contributions of local and regional sources to PM2. 5 and its health effects in north India. Atmos Environ 214:116867

    CAS  Article  Google Scholar 

  26. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42(7):1593–1606

    CAS  Article  Google Scholar 

  27. Harrison R, Yin J (2004) Characterisation of particulate matter in the United Kingdom. Report produced for Defra, the National Assembly for Wales, the Department of the Environment in Northern Ireland and the Scottish Executive, The University of Birmingham. Available on https://uk-air.defra.gov.uk/assets/documents/reports/cat05/0501111032_Characterisation-LiteratureReviewFINAL.pdf.

  28. Harrison RM, Smith DJT, Piou CA, Castro LM (1997) Comparative receptor modelling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). Atmos Environ 31(20):3309–3321

    CAS  Article  Google Scholar 

  29. Harrison RM, Yin J, Mark D, Stedman J, Appleby RS, Booker J, Moorcroft S (2001) Studies of the coarse particle (2.5–10 μm) component in UK urban atmospheres. Atmos Environ 35(21):3667–3679

    CAS  Article  Google Scholar 

  30. Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41(19):6606–6630

    CAS  Article  Google Scholar 

  31. Hopke PK (2000) A guide to positive matrix factorization. In Workshop on UNMIX and PMF as Applied to PM2.5 5:600.

  32. Hopke PK, Ramadan Z, Paatero P, Norris GA, Landis MS, Williams RW, Lewis CW (2003) Receptor modelling of ambient and personal exposure samples: 1998 Baltimore Particulate Matter Epidemiology-Exposure Study. Atmos Environ 37(23):3289–3302

    CAS  Article  Google Scholar 

  33. Hopke PK, Cohen DD, Begum BA, Biswas SK, Ni B, Pandit GG, Santoso M, Chung YS, Davy P, Markwitz A, Waheed S, Siddique N, Santos FL, Pabroa PCB, Senevirante MCS, Wimolwattanapun W, Bunprapob S, Vuong TB, Hien PD, Markowicz A (2008) Urban air quality in the Asian region. Sci Total Environ 404(1):103–112

    CAS  Article  Google Scholar 

  34. Huang F, Zhou J, Chen N, Li Y, Li K, Wu S (2019) Chemical characteristics and source apportionment of PM2.5 in Wuhan, China. J Atmos Chem 76:245–262

    CAS  Article  Google Scholar 

  35. Jain S (2017) Exposure to In-Vehicle Respirable Particulate Matter in Passenger Vehicles under Different Ventilation Conditions and Seasons. Sustain Environ Res 27:87–94

    CAS  Article  Google Scholar 

  36. Jose J, Srimuruganandam B, Nagendra SMS (2019) Characterization of PM 10 and PM 2.5 Emission Sources at Chennai, India. Nature Environment and Pollution Technology 18(2):555–562

    CAS  Google Scholar 

  37. Joseph AE, Unnikrishnan S, Kumar R (2016) Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. Aerosol Air Qual Res 12(1):61–72

    Article  CAS  Google Scholar 

  38. Kahyaoğlu-Koračin J, Bassett SD, Mouat DA, Gertler AW (2009) Application of a scenario-based modeling system to evaluate the air quality impacts of future growth. Atmos Environ 43(5):1021–1028

    Article  CAS  Google Scholar 

  39. Kansal A, Khare M, Sharma CS (2011) Air quality modelling study to analyse the impact of the World Bank emission guidelines for thermal power plants in Delhi. Atmos Pollut Res 2(1):99–105

    CAS  Article  Google Scholar 

  40. Khanna I, Khare M, Gargava P (2015) Health risks associated with heavy metals in fine particulate matter: a case study in Delhi city, India. Journal of Geoscience and Environment Protection 3(02):72–77

    Article  Google Scholar 

  41. Khare P, Baruah BP (2010) Elemental characterization and source identification of PM2. 5 using multivariate analysis at the suburban site of North-East India. Atmos Res 98(1):148–162

    CAS  Article  Google Scholar 

  42. Khillare PS, Sarkar S (2012) Airborne inhalable metals in residential areas of Delhi, India: distribution, source apportionment and health risks. Atmos Pollut Res 3(1):46–54

    CAS  Article  Google Scholar 

  43. Kim YJ, Kim KW, Kim SD, Lee BK, Han JS (2006) Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos Environ 40:593–605

    Article  CAS  Google Scholar 

  44. Kota SH, Guo H, Myllyvirta L, Hu J, Sahu SK, Garaga R, Ying Q, Gao A, Dahiya S, Wang Y, Zhang H (2018) Year-long simulation of gaseous and particulate air pollutants in India. Atmos Environ 180:244–255

    CAS  Article  Google Scholar 

  45. Kothai P, Saradhi IV, Prathibha P, Hopke PK, Pandit GG, Puranik VD (2008) Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual Res 8(4):423–436

    CAS  Article  Google Scholar 

  46. Kumar A, Ambade B, Sankar TK, Sethi SS, Kurwadkar S (2020) Source identification and health risk Sustain. Cities Soc., assessment of atmospheric PM2. 5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable Cities Soc 52:101801.

  47. Lancet Planet Health (2019) The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. https://doi.org/10.1016/S2542-5196(18)30261-4

  48. Lelieveld J, Evans J, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371

    CAS  Article  Google Scholar 

  49. Lind JA, Kok GL (1999) Emission strengths for primary pollutants as estimated from an aircraft study of Hong Kong air quality. Atmos Environ 33(5):825–831

    CAS  Article  Google Scholar 

  50. Long SL, Zeng JR, Li Y, Bao L, Cao L, Liu K, Xu L, Lin J, Liu W, Wang G, Yao J, Ma C, Zhao Y (2014) Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai. J Environ Sci 26(5):1040–1051

    CAS  Article  Google Scholar 

  51. Marcazzan GM, Ceriani M, Valli G, Vecchi R (2003) Source apportionment of PM10 and PM2. 5 in Milan (Italy) using receptor modelling. Sci Total Environ 317(1-3):137–147

    CAS  Article  Google Scholar 

  52. McCarty J, Kaza N (2015) Urban form and air quality in the United States. Landscape Urban Plan 139:168–179

    Article  Google Scholar 

  53. Mohan M, Bhati S, Gunwani P, Marappu P (2012) Emission inventory of air pollutants and trend analysis based on various regulatory measures over megacity Delhi (Vol. 6). Chapter. Available on https://www.intechopen.com/books/air-quality-new-perspective/emission-inventory-of-air-pollutants-and-trend-analysis-based-on-various-regulatory-measures-over-me.

  54. Nagar PK, Singh D, Sharma M, Kumar A, Aneja VP, George MP, Agarwal N, Shukla SP (2017) Characterization of PM 2.5 in Delhi: role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. Environ Sci Poll Res 24(32):25179–25189

    CAS  Article  Google Scholar 

  55. Nagendra SMS, Peter AE, Menon JS, Akolkar AB (2018) Microanalysis and source apportionment of particulate emissions from anthropogenic sources in two Indian cities. Air Pollut 26:230

    Google Scholar 

  56. Nasir H, Goyal K, Prabhakar D (2016) Review of air quality monitoring: case study of India. Indian J Sci Technol 9:44

    Google Scholar 

  57. Nayebare SR, Aburizaiza OS, Khwaja HA, Siddique A, Hussain MM, Zeb J, Khatib F, Carpenter DO, Blake DR (2016) Chemical Characterization and Source Apportionment of PM2. 5 in Rabigh, Saudi Arabia. Aerosol Air Qual Res 16:3114–3129

    CAS  Article  Google Scholar 

  58. Pant P, Harrison RM (2013) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12

    Article  CAS  Google Scholar 

  59. Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison RM (2015) Characterization of ambient PM2. 5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189

    CAS  Article  Google Scholar 

  60. Perrino C, Tiwari S, Catrambone M, Dalla Torre S, Rantica E, Canepari S (2011) Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmos Pollut Res 2(4):418–427

    CAS  Article  Google Scholar 

  61. Pipal AS, Satsangi PG (2015) Study of carbonaceous species, morphology and sources of fine (PM2. 5) and coarse (PM10) particles along with their climatic nature in India. Atmos Res 154:103–115

    CAS  Article  Google Scholar 

  62. Pipalatkar P, Khaparde VV, Gajghate DG, Bawase MA (2014) Source apportionment of PM2. 5 using a CMB model for a centrally located Indian city. Aerosol Air Qual Res 14:1089–1099

    CAS  Article  Google Scholar 

  63. QinY OK (2003) Chemical composition of atmospheric aerosol in Dundee, UK. Atmos Environ 37(1):93–104

    Article  Google Scholar 

  64. Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz CR, Cots N, Massague G, Puig O (2001) PM10 and PM2. 5 source apportionment in the Barcelona Metropolitan area, Catalonia. Spain. Atmos Environ 35(36):6407–6419

    CAS  Article  Google Scholar 

  65. Querol X, Alastuey A, Ruiz CR, Artiñano B, Hansson HC, Harrison RM, Buringh E, Brink HM, Lutz M, Straehl P, Schneider J (2004) Speciation and origin of PM10 and PM2. 5 in selected European cities. Atmos Environ 38(38):6547–6555

    CAS  Article  Google Scholar 

  66. Rasma K, Menon R, Kumar R, Gadhavi H, Sethi V (2019) Study of the Extent of Contribution of Regional Stubble Burning to the Air Pollution in Delhi-National Capital Region. A&WMA's 112th Annual Conference, at Quebec, Canada held on 19th (June 2019)

  67. Sahu SK, Beig G, Parkhi NS (2011) Emissions inventory of anthropogenic PM2. 5 and PM10 in Delhi during Commonwealth Games 2010. Atmos Environ 45(34):6180–6190

    CAS  Article  Google Scholar 

  68. Sharma M, Dikshit O (2016) Comprehensive study on air pollution and greenhouse gases (GHGs) in Delhi. Final Report, Prepared by IIT Kanpur, sponsored by Delhi Pollution Control Committee, New Delhi. 298 pages.

  69. Sharma SK, Mandal TK (2017) Chemical composition of fine mode particulate matter (PM2. 5) in an urban area of Delhi, India and its source apportionment. Urban Clim 21:106–122

    Article  Google Scholar 

  70. Sharma S, Panwar TS, Hooda RK (2013) Quantifying sources of particulate matter pollution at different categories of landuse in an urban setting using receptor modelling. Sustain Environ Res 23(6):393–402

    CAS  Google Scholar 

  71. Sharma SK, Mandal TK, Jain S, Sharma A, Saxena M (2016) Source apportionment of PM 2.5 in Delhi, India using PMF model. Bull Environ Contam Toxicol 97(2):286–293

    CAS  Article  Google Scholar 

  72. Sindhwani R, Goyal P, Kumar S, Kumar A (2015) Anthropogenic emission inventory of criteria air pollutants of an urban agglomeration-National Capital Region (NCR), Delhi. Aerosol Air Qual Res 15(4):1681–1697

    CAS  Article  Google Scholar 

  73. Singh RP, Chanduka L, Dhir A (2015) Impacts of Stubble Burning on Ambient Air Quality of a Critically Polluted Area–Mandi-Gobindgarh. J Pollut Eff 3(2)

  74. Singh N, Murari V, Kumar M, Barman SC, Banerjee T (2016) Fine particulates over South Asia: Review and meta-analysis of PM2. 5 source apportionment through receptor model. Environ Pollut 223:121–136

    Article  CAS  Google Scholar 

  75. Srimuruganandam B, Nagendra SMS (2012) Source characterization of PM10 and PM2. 5 mass using a chemical mass balance model at urban roadside. Sci Total Environ 433:8–19

    CAS  Article  Google Scholar 

  76. Stedman JR (2002) The use of receptor modelling and emission inventory data to explain the downward trend in UK PM10 concentrations. Atmos Environ 36(25):4089–4101

    CAS  Article  Google Scholar 

  77. Superczynski SD, Christopher SA (2011) Exploring land use and land cover effects on air quality in Central Alabama using GIS and remote sensing. Remote Sens 3(12):2552–2567

    Article  Google Scholar 

  78. Tiwari S, Chate DM, Pragya P, Ali K, Bisht DS (2012) Variations in mass of the PM 10, PM 2.5 and PM 1 during the monsoon and the winter at New Delhi. Aerosol Air Qual Res 12(1):20–29

    CAS  Article  Google Scholar 

  79. Tiwari S, Srivastava AK, Chate DM, Safai PD, Bisht DS, Srivastava MK, Beig G (2014) Impacts of the high loadings of primary and secondary aerosols on light extinction at Delhi during wintertime. Atmos Environ 92:60–68

    CAS  Article  Google Scholar 

  80. Tyagi S, Tiwari S, Mishra A, Hopke PK, Attri SD, Srivastava AK, Bisht DS (2016) Spatial variability of concentrations of gaseous pollutants across the National Capital Region of Delhi, India. Atmos Pollut Res 7(5):808–816

    Article  Google Scholar 

  81. Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwater W, Vallius M, Szidat S, Prevot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39(10):827–849

    CAS  Article  Google Scholar 

  82. Villalobos AM, Amonov MO, Shafer MM, Devi JJ, Gupta T, Tripathi SN, Rana KS, Mckenzie M, Bergin MH, Schauer JJ (2015) Source apportionment of carbonaceous fine particulate matter (PM2. 5) in two contrasting cities across the Indo–Gangetic Plain. Atmos Pollut Res 6(3):398–405

    CAS  Article  Google Scholar 

  83. Wåhlin P (2003) COPREM—a multivariate receptor model with a physical approach. Atmos Environ 37(35):4861–4867

    Article  CAS  Google Scholar 

  84. Wang G, Wang H, Yu Y, Gao S, Feng J, Gao S, Wang L (2003) Chemical characterization of water-soluble components of PM10 and PM2. 5 atmospheric aerosols in five locations of Nanjing. China. Atmos Environ 37(21):2893–2902

    CAS  Article  Google Scholar 

  85. Watson JG, Robinson NF, Lewis C, Coulter T, Chow JC, Fujita EM, Lowenthal DH, Conner TL, Henry RC, Willis RD (1997) Chemical mass balance receptor model version 8 (CMB8) user’s manual. Prepared for US Environmental Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV.

  86. Watson JG, Chow JC, Chen LWA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual Res 5(1):65–102

    CAS  Article  Google Scholar 

  87. Watson JG, Antony Chen LW, Chow JC, Doraiswamy P, Lowenthal DH (2008) Source apportionment: findings from the US supersites program. J Air Waste Manage 58(2):265–288

    CAS  Article  Google Scholar 

  88. Wei Z, Wang L, Hou L, Zhang H, Yue L, Wei W, Ma S, Zhang C, Ma X (2019) Source Apportionment of PM 2.5 in Handan City, China Using a Combined Method of Receptor Model and Chemical Transport Model. J Environ Health Sci 151-173.

  89. Weng Q, Yang S (2006) Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS. Environ Monit Assess 117:463–489

    CAS  Article  Google Scholar 

  90. Yang H, Chen W, Liang Z (2017) Impact of land use on PM2. 5 pollution in a representative city of middle China. Int J Environ Res Public Health 14(5):462

    Article  CAS  Google Scholar 

  91. Yu L, Wang G, Zhang R, Zhang L, Song Y, Wu B, Li X, An K, Chu J (2013) Characterization and source apportionment of PM2. 5 in an urban environment in Beijing. Aerosol Air Qual Res 13(2):574–583

    CAS  Article  Google Scholar 

  92. Zhang JG, Wang YS, Wang S, Mao T (2009) Source apportionment of non-methane hydrocarbon in Beijing using positive matrix factorization. Environ Sci Technol 32(5):35–39

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. K. Goyal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 364 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goyal, P., Gulia, S. & Goyal, S.K. Review of land use specific source contributions in PM2.5 concentration in urban areas in India. Air Qual Atmos Health (2021). https://doi.org/10.1007/s11869-020-00972-x

Download citation

Keywords

  • Land use
  • Source apportionment
  • PM2.5
  • Local air pollution
  • Uncertainty
  • India