A conceptual model to understand the soluble and insoluble Cr species in deliquesced particles

A Correction to this article was published on 19 February 2020

This article has been updated

Abstract

Trivalent chromium is a trace nutrient essential to human beings while hexavalent chromium is a known carcinogen and was among the 18 core hazardous air pollutants defined in 2004 by the US EPA. A new conceptual model of Cr speciation in deliquesced particles (pH 4) has been developed. The model provides new information on the soluble and insoluble forms of Cr in atmospheric PM. The dominant form of Cr(VI) in the solution was found to be Cr2O72−. CrO42− was produced by the dissolution of Na2CrO4(s) and K2CrO4(s) available in the solid core, but a considerable portion of the CrO42− precipitated as (NH4)2CrO4(s), CaCrO4(s), BaCrO4(s), and PbCrO4(s). Cr(OH)3 was found to be soluble, and the insoluble form of Cr(III) was Cr2(SO4)3. Conversion of Cr(VI) to Cr(III) was higher than the conversion of Cr(III) to Cr(VI). The simulation results agree with the field measurements near Cr industries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Change history

  • 19 February 2020

    The original version of this article unfortunately contained a mistake. The authors missed to include following statement as Acknowledgment.

References

  1. Ashley K, Howe AM, Demange M, Nygren O (2003) Sampling and analysis considerations for the determination of hexavalent chromium in workplace air. J Environ Monit 5:707–716

    CAS  Article  Google Scholar 

  2. ATSDR (2012) Toxicological profile for chromium. US Department of Health and Human Services Public Health Service, Agency for Toxic Substances and Disease Registry:1–419

  3. Bahadur R, Russell LM (2008) Effect of surface tension from MD simulations on size-dependent deliquescence of NaCl nanoparticles. Aerosol Sci Technol 42:369–376

    CAS  Article  Google Scholar 

  4. Davis A, Olsen RL (1995) The geochemistry of chromium migration and remediation in the subsurface. Groundwater 33:759–768

    CAS  Article  Google Scholar 

  5. Du Preez S, Beukes J, Van Dalen W, Van Zyl P, Paktunc D, Loock-Hattingh M (2017) Aqueous solubility of Cr (VI) compounds in ferrochrome bag filter dust and the implications thereof. Water SA 43:298–309

    Article  Google Scholar 

  6. Grohse P (1988) The fate of hexavalent chromium in the atmosphere. Research Triangle Institute

  7. Guertin J, Avakian CP, Jacobs JA (2016) Chromium (VI) handbook. CRC press, Boca Raton

    Google Scholar 

  8. Hagendorfer H, Uhl M (2007) Speciation of chromium in particulate matter (PM10): development of a routine procedure, impact of transport and toxicological relevance. Μmweltbundesamt, Vienna

    Google Scholar 

  9. Huang L, Fan Z(T), Yu CH, Hopke PK, Lioy PJ, Buckley BT, Lin L, Ma Y (2013) Interconversion of chromium species during air sampling: effects of O3, NO2, SO2, particle matrices, temperature, and humidity. Environ Sci Technol 47:4408–4415

    CAS  Article  Google Scholar 

  10. Huang L, Yu CH, Hopke PK, Lioy PJ, Buckley BT, Shin JY, Fan ZT (2014) Measurement of soluble and total hexavalent chromium in the ambient airborne particles in New Jersey. Aerosol Air Qual Res 14:1939–1949

    CAS  Article  Google Scholar 

  11. IARC (1990) IARC monographs on the evaluation of carcinogenic risks to humans: chromium, nickel and welding. International Agency for Research on Cancer

  12. Khan MF, Hwa SW, Hou LC, Mustaffa NIH, Amil N, Mohamad N, Sahani M, Jaafar SA, Nadzir MSM, Latif MT (2017) Influences of inorganic and polycyclic aromatic hydrocarbons on the sources of PM2.5 in the Southeast Asian urban sites. Air Qual Atmos Hlth 10:999–1013

    CAS  Article  Google Scholar 

  13. Khlystov A, Ma Y (2006) An on-line instrument for mobile measurements of the spatial variability of hexavalent and trivalent chromium in urban air. Atmos Environ 40:8088–8093

    CAS  Article  Google Scholar 

  14. Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  15. Li Y, Pradhan NK, Foley R, Low GK (2002) Selective determination of airborne hexavalent chromium using inductively coupled plasma mass spectrometry. Talanta 57:1143–1153

    CAS  Article  Google Scholar 

  16. Majestic BJ, Schauer JJ, Shafer MM (2007) Development of a manganese speciation method for atmospheric aerosols in biologically and environmentally relevant fluids. Aerosol Sci Technol 41:925–933

    CAS  Article  Google Scholar 

  17. Meng Q, Fan Z(T), Buckley B, Lin L, Huang L, Yu CH, Stiles R, Bonanno L (2011) Developmentand evaluation of a method for hexavalent chromium in ambient air using IC-ICP-MS. Atmos Environ 45:2021–2027

    CAS  Article  Google Scholar 

  18. Mölders N, Schilling PJ, Wong J, Roos JW, Smith IL (2001) X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline. Environ Sci Technol 35:3122–3129

    Article  Google Scholar 

  19. NJDEPA (2012) New Jersey chromium emission inventory. New Jersey

  20. Nusko R, Heumann K (1997) Cr (III)/Cr (VI) speciation in aerosol particles by extractive separation and thermal ionization isotope dilution mass spectrometry. Fresen J Anal Chem 357:1050–1055

    CAS  Article  Google Scholar 

  21. Palmer CD, Puls RW (1994) Natural attenuation of hexavalent chromium in groundwater and soils. In: EPA environmental assessment sourcebook. Ann Arbor Press, INC, Chelsea, Michigan, pp 57–72

    Google Scholar 

  22. Pettine M, Tonnina D, Millero FJ (2006) Chromium (VI) reduction by sulphur (IV) in aqueous solutions. Mar Chem 99:31–41

    CAS  Article  Google Scholar 

  23. Rai D, Sass BM, Moore DA (1987) Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorg Chem 26:345–349

    CAS  Article  Google Scholar 

  24. Reaney S, Smith D (2005) Manganese oxidation state mediates toxicity in PC12 cells. Toxicol Appl Pharmacol 205:271–281

    CAS  Article  Google Scholar 

  25. Ressler T, Wong J, Roos J (1999) Manganese speciation in exhaust particulates of automobiles using MMT-containing gasoline. J Synchrotron Rad 6:656–658

    CAS  Article  Google Scholar 

  26. Ressler T, Wong J, Roos J, Smith IL (2000) Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ Sci Technol 34:950–958

    CAS  Article  Google Scholar 

  27. Richter P, Grino P, Ahumada I, Giordano A (2007) Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmos Environ 41:6729–6738

    CAS  Article  Google Scholar 

  28. Rogula-Kozłowska W (2016) Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content. Air Qual Atmos Hlth 9:533–550

    Article  Google Scholar 

  29. Schroeder DC, Lee GF (1975) Potential transformations of chromium in natural waters. Water Air Soil Pollut 4:355–365

    CAS  Article  Google Scholar 

  30. Seigneur C, Constantinou E (1995) Chemical kinetic mechanism for atmospheric chromium. Environ Sci Technol 29:222–231

    CAS  Article  Google Scholar 

  31. Shah D, Aldamzharov B, Bukayeva A, Torkmahalleh MA, Ahmadi G (2017) Intermolecular interactions and its effect within Cr3+-containing atmospheric particulate matter using molecular dynamics simulations. Atmos Environ 166:334–339

    CAS  Article  Google Scholar 

  32. Talebi S (2003) Determination of total and hexavalent chromium concentrations in the atmosphere of the city of Isfahan. Environ Res 92:54–56

    CAS  Article  Google Scholar 

  33. Terraglio FP, Manganelli RM (1967) The absorption of atmospheric sulfur dioxide by water solutions. J Air Pollut Control Assoc 17:403–406

    CAS  Article  Google Scholar 

  34. Torkmahalleh MA, Lin L, Holsen TM, Rasmussen DH, Hopke PK (2012) The impact of deliquescence and pH on Cr speciation in ambient PM samples. Aerosol Sci Technol 46:690–696

    CAS  Article  Google Scholar 

  35. Torkmahalleh MA, Lin L, Holsen TM, Rasmussen DH, Hopke PK (2013a) Cr speciation changes in the presence of ozone and reactive oxygen species at low relative humidity. Atmos Environ 71:92–94

    Article  Google Scholar 

  36. Torkmahalleh MA, Yu CH, Lin L, Fan Z(T), Swift JL, Bonanno L, Rasmussen DH, Holsen TM, Hopke PK (2013b) Improved atmospheric sampling of hexavalent chromium. J Air Waste Manag Assoc 63:1313–1323

    CAS  Article  Google Scholar 

  37. Torkmahalleh MA, Karibayev M, Konakbayeva D, Fyrillas M, Rule AM (2018) Aqueous chemistry of airborne hexavalent chromium during sampling. Air Qual Atmos Health 11:1059–1068

    Article  Google Scholar 

  38. Werner M, Nico P, Guo B, Kennedy I, Anastasio C (2006) Laboratory study of simulated atmospheric transformations of chromium in ultrafine combustion aerosol particles. Aerosol Sci Technol 40:545–556

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehdi Amouei Torkmahalleh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konakbayeva, D., Adotey, E.K., Amouei Torkmahalleh, M. et al. A conceptual model to understand the soluble and insoluble Cr species in deliquesced particles. Air Qual Atmos Health 12, 1091–1102 (2019). https://doi.org/10.1007/s11869-019-00725-5

Download citation

Keywords

  • Atmospheric PM
  • Deliquescence
  • Conceptual model
  • Insoluble and soluble Cr