Ground states for asymptotically linear fractional Schrödinger–Poisson systems


In this paper we consider the following fractional Schrödinger–Poisson system

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u+u+K(x)\phi (x)u=g(x, u), \quad x\in \mathbb {R}^{3}, \\ (-\Delta )^s \phi =K(x)u^2, \quad x\in \mathbb {R}^{3}, \end{array}\right. } \end{aligned}$$

where \(s\in (\frac{1}{2},1)\) and g(xu) is asymptotically linear at infinity. Under certain assumptions on K(x) and g(xu), we prove the existence of ground state solutions by variational methods.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Ambrosetti, A., Ruiz, D.: Mutiple bound states for Schrödinger–Poisson problems. Commun. Contemp. Math. 10, 391–404 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 23–53 (2014)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Trans. Am. Math. Soc. 367, 911–941 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger–Poisson systems. Nonlinearity 29, 3103–3119 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    Article  Google Scholar 

  11. 11.

    Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858–892 (2014)

    Article  Google Scholar 

  14. 14.

    Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)

    Google Scholar 

  15. 15.

    Frank, R., Lenzmann, E.: Uniqueness of nonlinear ground states for fractional Laplacian in \({\mathbb{R}}\). Acta Math. 210, 261–318 (2013)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Frank, R., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Comm. Pure Appl. Math. 69(9), 1671–1726 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  Google Scholar 

  18. 18.

    Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Liu, W.: Existence of multi-bump solutions for the fractional Schrödinger–Poisson system. J. Math. Phys. 57, 091502 (2016)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Sun, J., Chen, H., Nieto, J.J.: On ground state solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 252, 3365–3380 (2012)

    Article  Google Scholar 

  22. 22.

    Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}}^{N}\). J. Math. Phys. 54, 031501 (2013)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)

    Article  Google Scholar 

  25. 25.

    Vaira, G.: Ground states for Schrödinger–Poisson type systems. Ric. Mater. 60, 263–297 (2011)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Google Scholar 

  27. 27.

    Yu, Y., Zhao, F., Zhao, L.: The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system. Calc. Var. Partial Differ. Equ. 56, 1–25 (2017)

    Article  Google Scholar 

  28. 28.

    Zhu, H.: Asymptotically linear Schrödinger–Poisson systems with potentials vanishing at infinity. J. Math. Anal. Appl. 380, 501–510 (2011)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Zhang, J., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16, 15–30 (2016)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Zhang, J., Liu, X., Jiao, H.: Multiplicity of positive solutions for fractional Laplacian equations involving critical nonlinearity. Topol. Methods Nonlinear Anal. 53, 151–182 (2019)

    MathSciNet  MATH  Google Scholar 

Download references


The authors wish to thank the anonymous referees very much for carefully reading this paper and suggesting many valuable comments. P. Chen was supported by the Research Foundation of Education Bureau of Hubei Province, China (Grant No. Q20192505). X. Liu was partially supported by the National Natural Science Foundation of China (Grant No. 11771342).

Author information



Corresponding author

Correspondence to Peng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Liu, X. Ground states for asymptotically linear fractional Schrödinger–Poisson systems. J. Pseudo-Differ. Oper. Appl. 12, 8 (2021).

Download citation


  • Fractional Schrödinger–Poisson system
  • Asymptotically linear
  • Variational methods

Mathematics Subject Classification

  • 35J50
  • 35R11