Explicit fundamental solution for the operator \(L+\alpha |T|\) on the Gelfand pair \((\mathbb {H}_{n},U(n))\).


By means of the spherical functions associated to the Gelfand pair \((\mathbb {H}_{n},U(n))\) we define the operator \(L+\alpha |T|\), where L denotes the Heisenberg sublaplacian and T denotes the central element of the Heisenberg Lie algebra, we establish a notion of fundamental solution and explicitly compute in terms of the Gauss hypergeometric function. For \(\alpha <n\) we use the Integral Representation Theorem to obtain a more detailed expression. Finally, we remark that when \(\alpha =0\) we recover the fundamental solution for the Heisenberg sublaplacian given by Folland.

This is a preview of subscription content, access via your institution.


  1. 1.

    See also the book of Rainville on Special Functions [14] and the comprehensive work of [11].


  1. 1.

    Benson, C., Jenkins, J., Ratcliff, G.: Bounded K-spherical functions on Heisenberg groups. J. Funct. An. 105–2, 409–443 (1992). https://doi.org/10.1016/0022-1236(92)90083-U

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Benson, C., Dooley, A.H., Ratcliff, G.: Fundamental solutions for powers of the Heisenberg sub-Laplacian. Ill. J. Math. 37–3, 455–476 (1993)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cardoso, I., Saal, L.: Explicit fundamental solutions of some second order differential operators on Heisenberg groups. Coll. Math 129–2, 263–288 (2012)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Dutka, J.: The incomplete beta function. A Hist. Profile, Arch. Hist. Exact Sci. 24, 11–29 (1981)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Faraut, J., Harzallah, K.: Deux Cours d’Analyse Harmonique, progress in mathematics. Birkhauser, Basel (1987)

    Google Scholar 

  6. 6.

    Folland, G.B.: A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79, 373–376 (1973)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Folland, G.B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13(2), 161–207 (1975)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Folland, G.B., Stein, E.M.: Estimates for the \(\bar{\partial }_b\) complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 27, 429–522 (1974)

    Article  Google Scholar 

  9. 9.

    Godoy, T., Saal, L.: \(L^{2}\) spectral decomposition on the Heisenberg group associated to the action of \(U(p, q)\). Pacific J. of Math. 193–2, 327–353 (2000)

    Article  Google Scholar 

  10. 10.

    Godoy, T., Saal, L.: On the relative fundamental solutions for a second order differential operator on the Heisenberg group. Stud. Math. 145–2, 143–164 (2001)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Julie Patricia Hannah, Identities for the gamma and hypergeometric functions: an overview from Euler to the present, Ph.D. thesis, (2013)

  12. 12.

    Kaplan, A.: Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Am. Math. Soc. 258, 147–153 (1980)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Müller, D., Ricci, F.: On the laplace-beltrami operator on the oscillator group. J. Reine. Angwe. Math. 390, 193–207 (1988). https://doi.org/10.1515/crll.1988.390.193

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Rainville, E.D.: Special functions. Chelsea Publishing Company, New York (1960)

    Google Scholar 

  15. 15.

    Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  16. 16.

    Strichartz, R.: Lp harmonic analysis and Radon transforms on the Heisenberg group. J. Funct. An. 96, 350–406 (1991). https://doi.org/10.1016/0022-1236(91)90066-E

    Article  MATH  Google Scholar 

  17. 17.

    Thangavelu, S.: Harmonic analysis on the Heisenberg group, progress in mathematics. Birkhauser, Basel (1998)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. E. Vidal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cardoso, I.E., Subils, M. & Vidal, R.E. Explicit fundamental solution for the operator \(L+\alpha |T|\) on the Gelfand pair \((\mathbb {H}_{n},U(n))\).. J. Pseudo-Differ. Oper. Appl. 12, 6 (2021). https://doi.org/10.1007/s11868-021-00375-1

Download citation


  • Heisenberg group
  • Fundamental solution of pseudodifferential operator
  • Gelfand pair
  • Spherical functions

Mathematics Subject Classification

  • 47G30
  • 58J40