Propagation principle for parabolic H-measures


We extend results obtained by Francfort (An introduction to H-measures and their applications. Variational problems in materials science. Birkhäuser, Basel, pp 85–110, 2006) to parabolic H-measures developed by Antonić and Lazar (J Funct Anal 265:1190–1239, 2013). The well known theory of pseudodifferential operators is extended to parabolic classes of symbols and operators and used to obtain results applicable to a wide class of partial differential equations. The main result is the propagation principle which is then applied to the Schrödinger equation and the vibrating plate equation.

This is a preview of subscription content, log in to check access.


  1. 1.

    Antonić, N.: H-measures applied to symmetric systems. Proc. R. Soc. Edinb. 126A, 1133–1155 (1996)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Antonić, N., Lazar, M.: H-measures and variants applied to parabolic equations. J. Math. Anal. Appl. 343, 207–225 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Antonić, N., Lazar, M.: Parabolic variant of H-measures in homogenisation of a model problem based on Navier–Stokes equation. Nonlinear Anal. B: Real World Appl. 11, 4500–4512 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Antonić, N., Lazar, M.: Parabolic H-measures. J. Funct. Anal. 265, 1190–1239 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Antonić, N., Mitrović, D.: \(H\)-distributions: an extension of \(H\)-measures to a \({\rm L}^p-{\rm L}^q\) setting. Abstr. Appl. Anal. 2011 Article ID 901084, 12 (2011)

  6. 6.

    Bényi, Á., Bownik, M.: Anisotropic classes of homogeneous pseudodifferential symbols. Stud. Math. 200(1), 41–66 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Boggiatto, P., Fabio, N.: Non-commutative residues for anisotropic pseudo-differential operators in \(\mathbb{R}^{n}\). J. Funct. Anal. 203(2), 305–320 (2003)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dehman, B., Léautaud, M., Le Rousseau, J.: Controllability of two coupled wave equations on a compact manifold. Arch. Ration. Mech. Anal. 211(1), 113–187 (2014)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Aethods for Science and Technology, pp. 1–6. Springer, Berlin (1992)

    Google Scholar 

  11. 11.

    Erceg, M., Ivec, I.: Second commutation lemma for fractional H-measures. J. Pseudo-Differ. Oper. Appl. 9(3), 589–613 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Francfort, G.A.: An Introduction to H-Measures and Their Applications. Variational Problems in Materials Science, pp. 85–110. Birkhäuser, Basel (2006)

    Google Scholar 

  13. 13.

    Gérard, P.: Microlocal defect measures. Comm. Partial Diff. Eq. 16, 1761–1794 (1991)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Gérard, P.: Mesures semi-classiques et ondes de Bloch. Sem. EDP 1990–91 (exp. \(\text{n}^\circ \) XVI), Ecole Polytechnique, Palaiseau (1991)

  15. 15.

    Hörmander, L.: The Analysis of Linear Partial Differential Operators I–IV, Springer (1985–90)

  16. 16.

    Lazar, M.: Exploring limit behaviour of non-quadratic terms via H-measures. Application to small amplitude homogenisation. Appl. Anal. 96(16), 2832–2845 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Lazar, M., Zuazua, E.: Averaged control and observation of parameter-depending wave equations, C. R. Acad. Sci. Paris, Ser. I 352(6), 497–502 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Lazar, M., Mitrović, D.: Velocity averaging—a general framework. Dyn. Partial Differ. Equ. 9, 239–260 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications I–III, Springer (1972–1973)

  20. 20.

    Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Revista Mat. Iberoamericana 9, 553–618 (1993)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Mitrović, D., Ivec, I.: A generalization of H-measures and application on purely fractional scalar conservation laws. Comm. Pure Appl. Anal. 10(6), 1617–1627 (2011)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Nicola, F.: Hörmander’s Inequality for anisotropic pseudo-differential operators. J. Partial Differ. Equ. 15(4), 49–64 (2002)

    MATH  Google Scholar 

  23. 23.

    Xavier, S.R.: Elementary introduction to the theory of pseudodifferential operators. CRC Press, Boca Raton (1991)

    Google Scholar 

  24. 24.

    Tartar, L.: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinb. 115A, 103–108 (1990)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Tsutsumi, C.: The Fundamental Solution for a Parabolic Pseudo-Differential Operator and Parametrices for Degenerate Operators. Proc. Jpn. Acad. 51, 103–108 (1975)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Man, W.: Wong: An Introduction to Pseudo-Differential Operators, 2nd edn. World Scientific, Singapore (1999)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ivan Ivec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors have been supported in part by Croatian Science Foundation under projects IP-2016-06-2468 ConDyS and IP-2018-01-2449 MiTPDE.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivec, I., Lazar, M. Propagation principle for parabolic H-measures. J. Pseudo-Differ. Oper. Appl. 11, 467–489 (2020).

Download citation


  • Parabolic H-measures
  • Localisation principle
  • Propagation principle
  • The Schrödinger equation
  • The vibrating plate equation

Mathematics Subject Classification

  • 35K10
  • 35K25
  • 35S05
  • 46G10