On the Hadamard and Riemann–Liouville fractional neutral functional integrodifferential equations with finite delay

  • Mohamed I. Abbas


This paper is concerned with the existence and uniqueness of solutions for Hadamard and Riemann–Liouville fractional neutral functional integrodifferential equations with finite delay. The existence of solutions is derived from Leray–Schauders alternative, whereas the uniqueness of solution is established by Banachs contraction principle. An illustrative example is also included.


Hadamard fractional derivative Riemann–Liouville fractional integral Neutral fractional differential equations Fixed point theorems 

Mathematics Subject Classification

34A08 34K37 34K40 


  1. 1.
    Abbas, M.I.: Existence and uniqueness of solution for a boundary value problem of fractional order involving two Caputos fractional derivatives. Adv. Differ. Equ. 2015, 252 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abbas, M.I.: Ulam stability of fractional impulsive differential equations with Riemann–Liouville integral boundary conditions. J. Contemp. Math. Anal. 50(5), 209–219 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Agarwal, R., Zhou, Y., He, Y.: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095–1100 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ahmad, B., Ntouyas, S.K., Tariboon, J.: A nonlocal hybrid boundary value problem of caputo fractional integro-differential equations. Acta Math. Sci. 36 B(6), 1631–1640 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ahmad, B., Ntouyas, S.K.: Initial value problems for functional and neutral functional Hadamard type fractional differential inclusions. Miskolc Math. Notes 17(1), 15–27 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ahmad, B., Ntouyas, S.K.: Eexistence and uniqueness of solutions for Caputo–Hadamard sequential fractional order neutral functional differential equations. EJDE 2017(36), 1–11 (2017)Google Scholar
  7. 7.
    Ahmad, B., Ntouyas, S.K., Tariboonc, J.: A study of mixed Hadamard and Riemann–Liouville fractional integro-differential inclusions via endpoint theory. Appl. Math. Lett. 52, 9–14 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Agarwal, P., Chand, M., Singh, G.: Certain fractional kinetic equations involving the product of generalized k-Bessel function. Alexandria Eng. J. 55, 3053–3059 (2016)CrossRefGoogle Scholar
  9. 9.
    Agarwal, P., Choib, J., Paris, R.B.: Extended Riemann–Liouville fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 8, 451–466 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Method Appl. Sci. 40(11), 3882–3891 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387–400 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, 1–27 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270, 1–15 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hadamard, J.: Essai sur l’etude des fonctions donnees par leur developpment de Taylor. J. Mater. Pure Appl. Ser. 8, 101–186 (1892)zbMATHGoogle Scholar
  16. 16.
    Hale, J., Verduyn Lunel, S.: Introduction to Functional Differential Equations, Series Applied Mathematical Sciences, vol. 99. Springer, New York (1993)Google Scholar
  17. 17.
    Kilbas, A.A., Srivastava, Hari M., Juan Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)Google Scholar
  18. 18.
    Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations, Series Mathematics and Its Applications, vol. 463. Kluwer, Dordrecht (1999)Google Scholar
  19. 19.
    Ma, Q., Wang, R., Wang, J., Ma, Y.: Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative. Appl. Math. Comput. 257, 436–45 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ruzhansky, M., Cho, Y.J., Agarwal, P., Area, I.: Advances in Real and Complex Analysis with Applications. Springer, Berlin (2017)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, J., Zhang, Y.: On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl. Math. Lett. 39, 85–90 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Faculty of ScienceAlexandria UniversityAlexandriaEgypt

Personalised recommendations