Advertisement

Multiple positive solutions for degenerate elliptic equations with singularity and critical cone Sobolev exponents

  • Haining Fan
Article
  • 24 Downloads

Abstract

In this paper, we study the existence of multiple positive solutions for degenerate elliptic systems with singular and critical cone Sobolev exponents on singular manifolds. With the help of the variational method, we obtain a multiplicity result.

Keywords

Multiple positive solutions Variational method Critical cone Sobolev exponent Singular term 

Mathematics Subject Classification

35R01 58J05 58J32 

References

  1. 1.
    Chen, H., Liu, X., Wei, Y.: Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities. Calc. Var. Partial Differ. Equ. 43, 463–484 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kondrat’ev, V.A.: Bundary value problems for elliptic equations in domains with conical points. Tr. Mosk. Mat. Obs. 16, 209–292 (1967)Google Scholar
  3. 3.
    Ju, V., Egorov, B.-W.: Schulze, Pseudo-Differential Operators, Singularities, Applications, Operator Theory, Advances and Applications 93. Birkhäuser, Basel (1997)Google Scholar
  4. 4.
    Mazzeo, R.: Elliptic theory of differential edge operators I. Commun. Partial Differ. Equ. 16, 1615–1664 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Melrose, R.B., Mendoza, G.A.: Elliptic operators of totally characteristic type, Preprint, Math. Sci. Res. Institute, MSRI, pp. 047–83 (1983)Google Scholar
  6. 6.
    Melrose, R.B., Piazza, P.: Analytic K-theory on manifolds with cornners. Adv. Math. 92, 1–26 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Schulze, B.-W.: Boundary value problems and singular pseudo-differential operators. Wiley, Chichester (1998)zbMATHGoogle Scholar
  8. 8.
    Schrohe, E., Seiler, J.: Ellipticity and invertiblity in the cone algebra on \(L_p\)-Sobolev spaces. Integral Equ. Oper. Theory 41, 93–114 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, H., Liu, X., Wei, Y.: Existence theorem for a class of semilinear elliptic equations with critical cone Sobolev exponent. Ann. Glob. Anal. Geom. 39, 27–43 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, H., Liu, X., Wei, Y.: Multiple solutions for semilinear totally characteristic equations with subcritical or critical cone sobolev exponents. J. Differ. Equ. 252, 4200–4228 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, X., Yuan, M.: Existence of nodal solution for semi-linear elliptic equations with critical Sobolev exponent on singular manifold. Acta Mathematica Scientia 33, 543–555 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, H., Liu, X., Wei, Y.: Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term. J. Differ. Equ. 252, 4289–4314 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fan, H.: Existence theorems for a class of edge-degenerate elliptic equations on singular manifolds. Proc. Edinb. Math. Soc. 2015, 1–23 (2015)MathSciNetGoogle Scholar
  14. 14.
    Fan, H., Liu, X.: Multiple positive solutions for degenerate elliptic equations with critical cone Sobolev Exponents on singular manifolds. Electron. J. Differ. Equ. 2013, 1–22 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fan, H.: Existence results for degenerate elliptic equations with critical cone Sobolev exponents. Acta Mathematica Scientia 34B(6), 1–15 (2014)MathSciNetGoogle Scholar
  16. 16.
    Liu, X., Zhang, S.: Multiple positive solutions for semi-linear elliptic systems involving sign-changing weight on manifolds with conical singularities. J. Pseudo-Differ. Oper. Appl. 7, 451–471 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, H., Wei, Y., Zhou, B.: Existence of solutions for degenerate elliptic equations with singular potential on singular manifolds. Mathematische Nachrichten 285, 1370–1384 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Struwe, M.: Variational Methods, 2nd edn. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  19. 19.
    Fan, H., Liu, X.: Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain. Nonlinear Anal. 114, 186–196 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lei, C., Liao, J., Tang, C.: Multiple positive solutions for Kirchhoff type problems with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Servadei, R., Enrico, V.: Mountain Pass solutions for nonlocal elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liu, J., Wang, L., Zhao, P.: Positive solutions for a nonlocal problem with a convection term and small perturbations. Math. Methods Appl. Sci. 40(3), 720–728 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fan, H., Liu, X.: The Maximum Principle of an Elliptic Operator with Totally Characteristic Degeneracy on Manifolds with Conical Singularities. Wuhan University, Preprint (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsChina University of Mining and TechnologyXuzhouChina

Personalised recommendations