Skip to main content
Log in

Study a class of nonlinear fractional non-autonomous evolution equations with delay

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper, we deal with a class of nonlinear fractional non-autonomous evolution equations with delay by using Hilfer fractional derivative, which generalized the famous Riemann–Liouville fractional derivative. Combining techniques of fractional calculus, measure of noncompactness and some fixed point theorem, we obtain new existence result of mild solutions when the associated semigroup is not compact. Furthermore, the assumptions that the nonlinear term satisfies some growth condition and noncompactness measure condition. The results obtained improve and extend some related conclusions. Finally, two examples will be presented to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and its Applications, vol. 2. Hindawi Publishing Corporation, Cairo, Egypt (2006)

  2. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence result for boundary value problem of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmad, B., Sivasundaram, S.: Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Anal. Hybrid Syst. 3, 251–258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benchohra, M., Seba, D.: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 8, 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balachandran, K., Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron. J. Qual. Theory Differ. Equ. 4, 1–12 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banaś, J., Goebel, K.: Measure of noncompactness in Banach spaces. In: Lectures Notes in Pure and Applied Mathematics, vol. 60. Marcel Pekker, New York (1980)

  7. Aghajani, A., Banaś, J., Sabzali, N.: Some generalizations of Darbo fixed point theorem and application. Bull. Belg. Math. Soc. Simon Stevin 20(2), 345–358 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl. https://doi.org/10.1007/s11874-015-0275-7

  9. Shu, X.B., Wang, Q.Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\alpha <2\). Comput. Math. Appl. 64, 2100–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  11. Wang, J., Feckan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 345–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its applications to a fractional differential equation. J. Math. Anal. Appl 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J., Zhou, Y., Fec̆kan, M.: Alternative results and robustness for fractional evolution equations with periodic boundary conditions. Electron. J. Qual. Theory Differ. Equ. 97, 1–15 (2011)

    MathSciNet  Google Scholar 

  14. Wang, J., Zhou, Y., Feckan, M.: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 74, 685–700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, P.Y., Li, Y.X., Chen, Q.Y., Feng, B.H.: On the initial value problem of fractional evolution equations with noncompact semigroup. Comput. Math. Appl. 67, 1108–1115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. J. Appl. Math. Stoch. Anal. 3, 197–211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, P.Y., Zhang, X.P., Li, Y.: Study on fractiona non-autonomous evolution equations with delay. Comput. Math. Appl. 73(5), 794–803 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Agarwal, P., Berdyshev, A.S., Karimov, E.T.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, G., Zhang, L., Song, G.: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. Theory Methods Appl. 74, 974–982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J.R., Zhou, Y., Fec̆kan, M.: On recent developments in the theory of boundary value problems for impulsive fractional differentail equations. Comput. Math. Appl. 64, 3008–3020 (2012)

    Article  MathSciNet  Google Scholar 

  21. Wang, J.R., Fec̆kan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, J.R., Li, X., Wei, W.: On the natural solution of an impulsive fractional differential equation of order \(q\in (1,2)\). Commun. Nonlinear Sci. Numer. Simul. 17, 4384–4394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fec̆kan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, G., Ahmad, B., Zhang, L., Nieto, J.J.: Comments on the concept of existence of solution for impulsive fractional differentail equations. Commun. Nonlinear Sci. Numer. Simul. 19, 401–403 (2014)

    Article  MathSciNet  Google Scholar 

  25. Zhou, W.X., Chu, Y.D.: Existence of solutions for fractional differential equations with multi-point boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17, 1142–1148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bai, Z.B., Du, X.Y., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 63, 1–11 (2016)

    MathSciNet  Google Scholar 

  27. Rashid, M.H.M., Al-Omari, A.: Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, 3493–503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gou, H.D., Li, B.L.: Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup. Commun. Nonlinear Sci. Numer. Simul. 42, 204–214 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yu, X.L., Wang, J.R.: Periodic BVPs for fractional order impulsive evolution equations. Bound. Value Probl. 35 (2014)

  30. Chadha, A., Pandey, D.N.: Existence results for an impulsive neutral fractional integro differential equation with infinite delay. Int. J. Differ. Equ. 2014, 10, Article ID 780636

  31. Wang, J., Fec̆kan, M., Zhou, Y.: Relaxed controls for nonlinear frational impulsive evolution equations. J. Optim. Theory Appl. 156, 13–32 (2013)

    Article  MathSciNet  Google Scholar 

  32. Li, F., Liang, J., Xu, H.K.: Existence of mild solutions for fractioanl integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)

    Article  MATH  Google Scholar 

  33. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, X., Agarwal, P., Liu, Z., Peng, H.: The general solution for impulsive differential equations with Riemann–Liouville fractional-order \(q\in (1, 2)\). Open Math. 13(1), 908–930 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hilfer, R.: Applications of Fractional Caiculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  37. Furati, K.M., Kassim, M.D., Tatar, Ne-: Existence and uniqueness for a problem involving Hilfer factional derivative. Comput. Math. Appl. 64, 1612–1626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfre fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  40. Li, Y.X.: The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. 39(5), 666–672 (1996). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  41. Guo, D.J., Sun, J.X.: Ordinary Differential Equations in Abstract Spaces. Shandong Science and Technology, Jinan (1989). (in Chinese)

    Google Scholar 

  42. Heinz, H.R.: On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 71, 1351–1371 (1983)

    Article  MATH  Google Scholar 

  43. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  44. Sun, J., Zhang, X.: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations. Acta Math. Sin. 48, 439–446 (2005). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  45. Liang, J., Xiao, T.J.: Abstract degenerate Cauchy problems in locally convex spaces. J. Math. Anal. Appl. 259, 398–412 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractioanl evolution equations. J. Integral Equ. Appl. 25, 557–586 (2013)

    Article  MATH  Google Scholar 

  47. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution eqautions. Nonlinear Anal. Real World Appl. 5, 4465–4475 (2010)

    Article  MATH  Google Scholar 

  48. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. In: Kertesz, I., Kondor, I. (eds.) Econophysics: An Emerging Science. Kluwer, Dordrecht (2000)

    Google Scholar 

  49. Ouyang, Z.: Existence and uniqueness of the solutions for a class of nonlinear fractional order partial differential equations with delay. Comput. Math. Appl. 61, 860–870 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhu, B., Liu, L., Wu, Y.: Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Comput. Math. Appl. (2016). https://doi.org/10.1016/j.camwa.2016.01.028

Download references

Acknowledgements

We wish to thank the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Baolin Li.

Ethics declarations

Conflict of interest

All the authors declare that they have no competing interests.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 11061031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, H., Li, B. Study a class of nonlinear fractional non-autonomous evolution equations with delay. J. Pseudo-Differ. Oper. Appl. 10, 155–176 (2019). https://doi.org/10.1007/s11868-017-0234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-017-0234-8

Keywords

Mathematics Subject Classification

Navigation