Eradicating Cancer Stem Cells: Concepts, Issues, and Challenges

  • Gurpreet Kaur
  • Praveen Sharma
  • Nilambra Dogra
  • Sandeep Singh
Hot Topic

Opinion statement:

The cells of malignant cancers result in the evolution of cells with stem-like characteristics, commonly known as cancer stem cells (CSCs). Progress of anticancer therapies is severely hampered because of disease relapse mostly in a more aggressive form due to CSCs. These CSCs are more or less like embryonic or tissue stem cells, known for their capacity of self-renewal, exactly recapitulate of the original tumor. Deregulation of key stem cell pathways like Wnt, Hedgehog (Hh), and Notch is attributed towards the rise of CSCs. Recent breakthroughs offer better insights into CSC signaling. Scientists have developed several combinatorial therapies like targeting one/multiple of these CSC pathways. The article summarized various markers used to identify CSCs and discuss major signaling pathways in them. The futuristic probabilities to use CSC therapeutics in clinical development have been discussed. Our views have been highlighted on the future directions for targeting advances in the clinical development.


Cancer stem cells Chemoresistance EpCAM Wnt Hh and Notch signaling 



ATP-binding cassette


aldehyde dehydrogenase 1


adenomatous polyposis coli


basal cell carcinoma

Bmi 1

B cell-specific Moloney murine leukemia virus integration site 1




brain tumor stem cell


Crypt base columnar


Chemokine C-C motif ligand 5


Chemokine C-C Motif Receptor 5


Casein Kinase Iε


Cancer stem cells


C-X-C motif chemokine ligand 12


Chemokine receptor type 4


Dickkopf related protein 1


Delta-like ligands


Epithelial-to-mesenchymal transition


Epithelial cell adhesion molecule

ES cells

Embryonic stem cells


Epithelial surface antigen


Fibroblast growth factor 20








Glycosylphosphatidylinositol-anchored protein


Gamma secretase inhibitors




Hepatocellular stem cells


Hepatic stem/progenitor cells


Intracellular domain

IWR compounds

Inhibitors of Wnt response compounds

JAG1 and JAG2

Jagged proteins




Mesenchymal stem cells


N myc downregulated gene 2


Notch intracellular domain


Nemo-like kinase


Non-obese diabetic- severe combined immunodeficient


Peroxisome proliferator-activated receptor γ


Stem cell factor receptor


Stromal cell-derived factor


Secreted Hedgehog ligands


Sonic Hedgehog


Small molecule anti-smoothened


Side population


Tumor, necrosis factor alpha-converting enzyme


T cell factor


WNT1- inducible signaling pathway



All the authors thank the Vice-Chancellor of CUPB for the support.

Funding Information

The work was supported by CUPB-RSM and UGC startup grants.

Compliance with Ethical Standards

Conflict of Interest

Gurpreet Kaur, Praveen Sharma, Nilambra Dogra, and Sandeep Singh declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.CrossRefPubMedGoogle Scholar
  2. 2.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.Google Scholar
  3. 3.
    Camarasa MV. Directed Differentiation of Pluripotent Cells Towards Therapeutic Stem Cells. Recent Pat Regen Med. 2015;5:85–101.Google Scholar
  4. 4.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.Google Scholar
  5. 5.
    Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36:568–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone. 2006;39:678–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature. 2007;449:557–63.Google Scholar
  8. 8.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.Google Scholar
  10. 10.
    Henrique D, Hirsinger E, Adam J, Le Roux I, Pourquié O, Ish-Horowicz D, et al. Maintenance of neuroepithelial progenitor cells by Delta–Notch signaling in the embryonic chick retina. Curr Biol. 1997;7:661–70.Google Scholar
  11. 11.
    Bandhavkar S. Cancer stem cells: a metastasizing menace! Cancer Med. 2016;5:649–55.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Van Dussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Devel. 2012;139:488–97.Google Scholar
  13. 13.
    Bray SJ. Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7:678–89.CrossRefPubMedGoogle Scholar
  14. 14.
    Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Devel. 2013;140:689–704.Google Scholar
  15. 15.
    Taipale J, Beachy PA. The Hedgehog and Wntsignalling pathways in cancer. Nature. 2001;411:349–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Lai K, Kaspar BK, Gage FH, Schaffer DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nature Neurosci. 2003;6:21–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Evangelista M, Tian H, de Sauvage FJ. The hedgehog signaling pathway in cancer. Clin Cancer Res. 2006;12:5924–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumor initiating cells. Nature. 2004;432:396–401.Google Scholar
  19. 19.
    Uchida H, Arita K, Yunoue S, Yonezawa H, Shinsato Y, Kawano H, et al. Role of sonic hedgehog signaling in migration of cell lines established from CD133-positive malignant glioma cells. J Neurooncol. 104:697–704.Google Scholar
  20. 20.
    Irollo E, Pirozzi G. CD133: to be or not to be, is this the real question? Am J Transl Res. 2013;5:563–81.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Giebel B, Corbeil D, Beckmann J, Höhn J, Freund D, Giesen K, et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood. 2004;104:2332–8.Google Scholar
  22. 22.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, John SY. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006; 1.Google Scholar
  23. 23.
    Ma S, Chan KW, Lee TKW, Tang KH, Wo JYH, Zheng BJ, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 2002;6:1146–53.Google Scholar
  24. 24.
    Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007;43:935–46.Google Scholar
  25. 25.
    Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, et al. Identification of Putative Stem Cell Markers, CD133 and CXCR4, in hTERT–Immortalized Primary Nonmalignant and Malignant Tumor-Derived Human Prostate Epithelial Cell Lines and in Prostate Cancer Specimens. Cancer Res. 2007;67:3153–61.Google Scholar
  26. 26.
    Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, et al. Expression of CD133–1 and CD133–2 in ovarian cancer. Int J Gynecol Cancer. 2008;18:506–14.Google Scholar
  27. 27.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133+ and CD133− glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67:4010–5.Google Scholar
  28. 28.
    Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, et al. Transcriptional profiles of CD133+ and CD133− glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res. 2010;70:2030–40.Google Scholar
  29. 29.
    Schmelzer E, Reid LM. EpCAM expression in normal, non-pathological tissues. Front Biosci. 2007;13:3096–100.CrossRefGoogle Scholar
  30. 30.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.Google Scholar
  31. 31.
    Pantel K, Alix-Panabières C. Circulating tumor cells in cancer patients: challenges and perspectives. Trends Mol Med. 2010;16:398–406.CrossRefPubMedGoogle Scholar
  32. 32.
    Munz M, Baeuerle PA, Gires O. The Emerging Role of EpCAM in Cancer and Stem Cell Signaling. Cancer Res. 2009;69:5627–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, et al. Nuclear signaling by tumor-associated antigen EpCAM. Nat Cell Biol. 2009;11:162–71.Google Scholar
  34. 34.
    Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res. 2007;67:10,831–9.CrossRefGoogle Scholar
  35. 35.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10,158–63.Google Scholar
  36. 36.
    Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, et al. Aldehyde Dehydrogenase 1 Is a Tumor Stem Cell-Associated Marker in Lung Cancer. Mol Cancer Res. 2009;7:330–8.Google Scholar
  37. 37.
    Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13:2236–52.Google Scholar
  38. 38.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.Google Scholar
  39. 39.
    Elkord AJA. E, Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clin Dev Immunol. 2012;2012:11.Google Scholar
  40. 40.
    Leung ELH, Fiscus RR, Tung JW, Tin VPC, Cheng LC, Sihoe ADL, et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PloS one. 2010;5:e14062.Google Scholar
  41. 41.
    Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73.Google Scholar
  42. 42.
    Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Hauβmann I, et al. new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991;65:13–24.Google Scholar
  43. 43.
    Weber GF, Bronson RT, Ilagan J, Cantor H, Schmits R, Mak TW. Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res. 2002;62:2281–6.PubMedGoogle Scholar
  44. 44.
    Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive. Blood. 2005;106:1232–9.Google Scholar
  45. 45.
    Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 2006;16:79–87.CrossRefPubMedGoogle Scholar
  46. 46.
    Napier SL, Healy ZR, Schnaar RL, Konstantopoulos K. Selectin Ligand Expression Regulates the Initial Vascular Interactions of Colon Carcinoma Cells: the roles of cd44v and alternative sialofucosylated selectin ligands. J Biol Chem. 2007;282:3433–41.CrossRefPubMedGoogle Scholar
  47. 47.
    Bourguignon LY. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J Mammary Gland Biol Neoplasia. 2001;6:287–97.CrossRefPubMedGoogle Scholar
  48. 48.
    Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751–60.Google Scholar
  49. 49.
    Bapat SA. Human ovarian cancer stem cells. Reproduction. 2010;140:33–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10,946–51.CrossRefGoogle Scholar
  51. 51.
    Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 2006;25:1696–708.Google Scholar
  52. 52.
    Allegra E, Trapasso S, Pisani D, Puzzo L. The role of BMI1 as a biomarker of cancer stem cells in head and neck cancer: a review. Oncology. 2014;86:199–205.CrossRefPubMedGoogle Scholar
  53. 53.
    Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, et al. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PloS one. 2013;8:e55820.Google Scholar
  54. 54.
    Wei XD, He J, Wang JY, Yang XL, Ma BJ. Bmi-1 is essential for the oncogenic potential in CD133(+) human laryngeal cancer cells. Tumor Biol. 2015;36:8931–42.CrossRefGoogle Scholar
  55. 55.
    Zheng J, Li Y, Yang J, Liu Q, Shi M, Zhang R, et al. NDRG2 inhibits hepatocellular carcinoma adhesion, migration and invasion by regulating CD24 expression. BMC Cancer. 2011;11:1–9.Google Scholar
  56. 56.
    Aigner S, Ramos CL, Hafezi-moghadam A, Lawrence MB, Friederichs J, Altevogt P, et al. CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J. 1998;12:1241–51.Google Scholar
  57. 57.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.Google Scholar
  58. 58.
    Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 2011; jcp. 2011.090456.Google Scholar
  59. 59.
    Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J. 2006;20:1045–54.CrossRefPubMedGoogle Scholar
  60. 60.
    Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM, Goltry KL. Clinical-Scale Expansion of a Mixed Population of Bone Marrow-Derived Stem and Progenitor Cells for Potential Use in Bone Tissue Regeneration. Stem Cells. 2007;25:2575–82.CrossRefPubMedGoogle Scholar
  61. 61.
    Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells. 2008;26:364–71.Google Scholar
  62. 62.
    Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells. 2006;24:2840–50.Google Scholar
  63. 63.
    Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ Cancer Stem Cells in Human Liver Cancer. Cancer Cell. 2008;13:153–66.Google Scholar
  64. 64.
    Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, et al. Endoglin (CD105): A Marker of Tumor Vasculature and Potential Target for Therapy. Clin Cancer Res. 2008;14:1931–7.Google Scholar
  65. 65.
    Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al. Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche. Cancer Res. 2011;71:5346–56.Google Scholar
  66. 66.
    Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22:3696–705.CrossRefPubMedGoogle Scholar
  67. 67.
    Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, et al. Positive Correlations of Oct-4 and Nanog in Oral Cancer Stem-Like Cells and High-Grade Oral Squamous Cell Carcinoma. Clin Cancer Res. 2008;14:4085–95.Google Scholar
  68. 68.
    Margaritescu C, Pirici D, Simionescu C, Stepan A. The utility of CD44, CD117 and CD133 in identification of cancer stem cells (CSC) in oral squamous cell carcinomas (OSCC). Rom J Morphol Embryol. 2011;52:985–93.PubMedGoogle Scholar
  69. 69.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7:1028–34.Google Scholar
  70. 70.
    Wu C, Alman BA. Side population cells in human cancers. Cancer Lett. 2008;268:1–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Burkert J, Otto W, Wright N. Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol. 2008;214:564–73.CrossRefPubMedGoogle Scholar
  72. 72.
    Shi GM, Xu Y, Fan J, Zhou J, Yang XR, Qiu SJ, et al. Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol. 2008;134:1155–63.Google Scholar
  73. 73.
    Zhang SN, Huang FT, Huang YJ, Zhong W, Characterization YZ. of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells. Tumori. 2010;96:985–92.PubMedGoogle Scholar
  74. 74.
    Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res. 2005;65:6207–19.Google Scholar
  75. 75.
    Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A. 2004;101:781–6.Google Scholar
  76. 76.
    Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24:506–13.Google Scholar
  77. 77.
    Hirschmann-Jax C, Foster A, Wulf G, Nuchtern J, Jax T, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101:14,228–33.Google Scholar
  78. 78.
    Deonarain MP, Kousparou CA, Epenetos AA. Antibodies targeting cancer stem cells: A new paradigm in immunotherapy? MAbs. 2009;1:12–25.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12:1167–74.CrossRefPubMedGoogle Scholar
  80. 80.
    Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012;30:372–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Chen J, Wang J, Chen D, Yang J, Yang C, Zhang Y, et al. Evaluation of characteristics of CD44 + CD117+ ovarian cancer stem cells in three dimensional basement membrane extract scaffold versus two dimensional monocultures. BMC Cell Biol. 2013;14:1–11.Google Scholar
  82. 82.
    Syed IS, Pedram A, Farhat WA. Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis. Curr Urol Rep. 2016;17:1–7.CrossRefGoogle Scholar
  83. 83.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.Google Scholar
  84. 84.
    Wang WJ, Wu MY, Shen M, Zhi Q, Liu ZY, Gong FR, et al. Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the beta-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol. 2015;47:1912–22.Google Scholar
  85. 85.
    • McAuliffe SM, Morgan SL, Wyant GA, Tran LT, Muto KW, Chen YS, et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci U S A. 2012;109:E2939–48. Described the cisplatin/GSI combination as an efficient treatment to eradicate both CSCs and the bulk of tumor cells in Notch-dependent tumor cells.Google Scholar
  86. 86.
    •• Yahyanejad S, King H, Iglesias VS, Granton PV, Barbeau LM, van Hoof SJ, Groot AJ, Habets R, Prickaerts J, Chalmers AJ, Eekers DB, Theys J, Short SC, Verhaegen F, Vooijs M. NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma. Oncotarget 2016. NOTCH/γ-secretase inhibitor (GSI) RO4929097 combined with temozolomide and radiotherapy reduced tumor growth.Google Scholar
  87. 87.
    •• Zhao ZL, Zhang L, Huang CF, Ma SR, Bu LL, Liu JF, et al. NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep. 2016;6:24704. DAPT (GSI-IX) reduces CSC frequency either alone or in combination with chemotherapeutic agents.Google Scholar
  88. 88.
    •• Yokogi S, Tsubota T, Kanki K, Azumi J, Itaba N, Oka H, et al. Wnt/Beta-Catenin Signal Inhibitor HC-1 Sensitizes Oral Squamous Cell Carcinoma Cells to 5-Fluorouracil through Reduction of CD44-Positive Population. Yonago Acta Med. 2016;59:93–9. It is a translational and clinical study to improve cancer remedy using Wnt/beta-catenin signal inhibitor HC-1.Google Scholar
  89. 89.
    Fevr T, Robine S, Louvard D, Huelsken J. Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells. Mol Cell Biol. 2007;27:7551–9.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5:100–7.Google Scholar
  91. 91.
    Liu L, Zhi Q, Shen M, Gong FR, Zhou BP, Lian L, Shen B, Chen K, Duan W, Wu MY, Tao M, Li W. FH535, a beta-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis. Oncotarget 2016.Google Scholar
  92. 92.
    Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, et al. Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 2015;75:1691–702.Google Scholar
  93. 93.
    •• Kim JY, Lee HY, Park KK, Choi YK, Nam JS, Hong IS. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget. 2016;7:20,395–409. Liver CSCs are responsible for tumor relapse, but CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling.Google Scholar
  94. 94.
    • Li X, Bai B, Liu L, Ma P, Kong L, Yan J, et al. Novel β-carbolines against colorectal cancer cell growth via inhibition of Wnt/β-catenin signaling. Cell Death Discov. 2015;1:15,033. isopropyl 9-ethyl-1- (naphthalen-1-yl)-9H-pyrido[3,4-b]indole-3-carboxylate (novel Wnt signaling inhibitor) inhibited the growth of colorectal cancer cells selectively and caused obvious G1-phase arrest of the cell cycle via Wnt signaling pathway.Google Scholar
  95. 95.
    Yakisich JS. Challenges and limitations of targeting cancer stem cells and/or the tumor microenvironment. Drugs Ther Stud. 2012;2:10.CrossRefGoogle Scholar
  96. 96.
    Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13:4042–5.CrossRefPubMedGoogle Scholar
  97. 97.
    Naka K, Hoshii T, Hirao A. Novel therapeutic approach to eradicate tyrosine kinase inhibitor resistant chronic myeloid leukemia stem cells. Cancer Sci. 2010;101:1577–81.CrossRefPubMedGoogle Scholar
  98. 98.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.Google Scholar
  99. 99.
    • Qu Y, Gharbi N, Yuan X, Olsen JR, Blicher P, Dalhus B, et al. Axitinib blocks Wnt/beta-catenin signaling and directs asymmetric cell division in cancer. Proc Natl Acad Sci U S A. 2016;113:9339–44. Therapeutic benefits to cancer patients with aberrant nuclear β-catenin activation.Google Scholar
  100. 100.
    • Huang SMA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wntsignalling. Nature. 2009;461:614–20. Wnt pathway inhibitor (XAV939) stimulates degradation of β-catenin as a good strategy to treat cancer.Google Scholar
  101. 101.
    Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, et al. Human colon cancer epithelial cells harbor active HEDGEHOG-GLI signaling that is essential for tumor growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 2009;1:338–51.Google Scholar
  102. 102.
    Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, et al. Inhibition of the hedgehogpathway in advancedbasal-cell carcinoma. N Engl J Med. 2009;361:1164–72.Google Scholar
  103. 103.
    Yauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T, et al. Smoothened Mutation Confers Resistance to a Hedgehog Pathway Inhibitor in Medulloblastoma. Science. 2009;326:572–4.Google Scholar
  104. 104.
    Justilien V, Fields AP. βMolecular Pathways: Novel Approaches for Improved Therapeutic Targeting of Hedgehog Signaling in Cancer Stem Cells. Clin Cancer Res. 2015;21:505–13.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Mamaeva V, Niemi R, Beck M, Ozliseli E, Desai D, Landor S, et al. Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying [gamma]-secretase Inhibitors. Mol Ther. 2016;24:926–36.Google Scholar
  106. 106.
    Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, Korangath P, et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett. 2013;335:41–51.Google Scholar
  107. 107.
    Garg M. Emerging role of microRNAs in cancer stem cells: Implications in cancer therapy. World J Stem Cells. 2015;7:1078.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, et al. MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br J Cancer. 2014;111:1572–80.Google Scholar
  109. 109.
    Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH, et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30:2463–74.Google Scholar
  110. 110.
    Zhou AD, Diao LT, Xu H, Xiao ZD, Li JH, Zhou H, et al. β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene. 2012;31:2968–78.Google Scholar
  111. 111.
    Cairo S, Wang Y, de Reyniès A, Duroure K, Dahan J, Redon MJ, et al. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA. 2010;107:20,471–6.Google Scholar
  112. 112.
    Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013;58:629–41.CrossRefPubMedGoogle Scholar
  113. 113.
    Bao B, Ali S, Ahmad A, Azmi AS, Li Y, Banerjee S, et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One. 2012;7:e50165.Google Scholar
  114. 114.
    Xu W, Ji J, Xu Y, Liu Y, Shi L, Liu Y, Lu X, Zhao Y, Luo F, Wang B, Ziang R. MicroRNA-191, by promoting the EMT and increasing CSC-like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Mol Carcinog 2015; (S1), E148–161.Google Scholar
  115. 115.
    Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.Google Scholar
  116. 116.
    Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207:475–89.Google Scholar
  117. 117.
    Sureban SM, May R, Qu D, Weygant N, Chandrakesan P, Ali N, et al. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS One. 2013;8:e73940.Google Scholar
  118. 118.
    King CE, Cuatrecasas M, Castells A, Sepulveda AR, Lee JS, Rustgi AK. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011;71:4260–8.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, et al. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest. 2013;123:1241–61.Google Scholar
  120. 120.
    Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, et al. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun. 2008;376:86–90.Google Scholar
  121. 121.
    Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, et al. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133:579–89.CrossRefPubMedGoogle Scholar
  122. 122.
    Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H, et al. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res. 2013;73:990–9.CrossRefPubMedGoogle Scholar
  123. 123.
    Lu Y, Lu J, Li X, Zhu H, Fan X, Zhu S, et al. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer. 2014;14:85.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, et al. Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 2011;30:1470–80.CrossRefPubMedGoogle Scholar
  125. 125.
    Morris VA, Zhang A, Yang T, Stirewalt DL, Ramamurthy R, Meshinchi S, et al. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors. PLoS One. 2013;8:e75815.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. 2011;10:1470–80.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68:9125–30.CrossRefPubMedGoogle Scholar
  128. 128.
    Collet G, Skrzypek K, Grillon C, Matejuk A, El Hafni-Rahbi B, Lamerant-Fayel N, et al. Hypoxia control to normalize pathologic angiogenesis: potential role for endothelial precursor cells and miRNAs regulation. Vascul Pharmacol. 2012;56:252–61.CrossRefPubMedGoogle Scholar
  129. 129.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 2009;4:e681.Google Scholar
  130. 130.
    Di Fiore R, Drago-Ferrante R, Pentimalli F, Di Marzo D, Forte IM, D’Anneo A, et al. MicroRNA-29b-1 impairs in vitro cell proliferation, self-renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells. Int J Oncol. 2014;45:2013–23.CrossRefPubMedGoogle Scholar
  131. 131.
    Scheibner KA, Teaboldt B, Hauer MC, Chen X, Cherukuri S, Guo Y, et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14–3-3theta. PLoS One. 2012;7:e50895.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Geng J, Luo H, Pu Y, Zhou Z, Wu X, Xu W, et al. Methylation mediated silencing of miR-23b expression and its role in glioma stem cells. Neurosci Lett. 2012;528:185–9.CrossRefPubMedGoogle Scholar
  133. 133.
    Sun X, Jiao X, Pestel TG, Fan C, Qin S, Mirabelli E, et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene. 2014;33:4967–77.CrossRefPubMedGoogle Scholar
  134. 134.
    Bimonte S, Barbieri A, Leongito M, Palma G, Del Vecchio V, Falco M, et al. The Role of miRNAs in the Regulation of Pancreatic Cancer Stem Cells. Stem Cells Int. 2016;2016:8352684.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Li Y, Guessous F, Zhang Y, DiPierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69:7569–76.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8.CrossRefPubMedGoogle Scholar
  137. 137.
    •• Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50:472–80. The highly expressed miR-181 promotes differentiation and directly targets CDX2, GATA6, and NLK in hepatocellular stem cells (HpSCs).Google Scholar
  138. 138.
    •• Yao S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online. 2016;18:8. Described the role of miR-128, miR-181, miR-16, miR-103, and miR-107 in cancer cell proliferation.Google Scholar
  139. 139.
    Hong M, Tan HY, Li S, Cheung F, Wang N, Nagamatsu T, et al. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds. Int J Mol Sci. 2016;17:893.CrossRefPubMedCentralGoogle Scholar
  140. 140.
    Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin SB, et al. Chapter Two-Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. Adv Cancer Res. 2016;130:55–111.CrossRefPubMedGoogle Scholar
  141. 141.
    Taniura H, Sng JC, Yoneda Y. Histone modifications in the brain. Neurochem Int. 2007;51:85–91.CrossRefPubMedGoogle Scholar
  142. 142.
    Chikamatsu K, Ishii H, Murata T, Sakakura K, Shino M, Toyoda M, et al. Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck. Cancer Sci. 2013;104:1468–75.CrossRefPubMedGoogle Scholar
  143. 143.
    Loriot A, Parvizi GK, Reister S, De Smet C. Silencing of cancer-germline genes in human preimplantation embryos: evidence for active de novo DNA methylation in stem cells. Biochem Biophys Res Commun. 2012;417:187–91.CrossRefPubMedGoogle Scholar
  144. 144.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391:597–601.CrossRefPubMedGoogle Scholar
  145. 145.
    Giudice FS, Pinto DS Jr, Nör JE, Squarize CH, Castilho RM. Inhibition of Histone Deacetylase Impacts Cancer Stem Cells and Induces Epithelial-Mesenchyme Transition of Head and Neck Cancer. PLoS ONE. 2013;8:e58672.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, et al. Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget. 2011;2:627–37.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Matsubara N. Epigenetic regulation and colorectal cancer. Dis Colon Rectum. 2012;55:96–104.CrossRefPubMedGoogle Scholar
  148. 148.
    Tsujii M. Cyclooxygenase, Cancer Stem Cells and DNA Methylation Play Important Roles in Colorectal Carcinogenesis. Digestion. 2013;87:12–6.CrossRefPubMedGoogle Scholar
  149. 149.
    Liu CC, Lin JH, Hsu TW, Su K, Li AF, Hsu HS, et al. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer. 2015;136:547–59.PubMedGoogle Scholar
  150. 150.
    Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells. 2015;7:137–48.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP. Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol. 2005;33:53–61.CrossRefPubMedGoogle Scholar
  152. 152.
    Kikuchi J, Takashina T, Kinoshita I, Kikuchi E, Shimizu Y, Sakakibara-Konishi J, et al. Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer. 2012;78:138–43.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Kondo Y. Targeting histone methyltransferase EZH2 as cancer treatment. J Biochem. 2014;156:249–57.CrossRefPubMedGoogle Scholar
  154. 154.
    Momparler RL, Cote S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investi Drug. 2015;24:1031–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Science and TechnologyCentral University of PunjabBathindaIndia
  2. 2.Laboratory of Molecular Medicine, Department of Human Genetics and Molecular MedicineCentral University of PunjabBathindaIndia
  3. 3.Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations